This lab implements MATLAB code relative to the concept of change of basis in \mathbb{R}^n.

What you have to submit: Submit the required MATLAB code from TASK I electronically by e-mail to your lab instructor. Name the file `YourLastnameFirstnameI.m`.

Important notice: Lab assignments must be submitted using your KSU email address. Lab assignments submitted from a non-KSU email address will not be considered. Files with an incorrect extension will not be considered. Please write in the subject of your email: Lab 7 and your first name and last name.

TASK I.

Warm up. Consider the following ordered bases for \mathbb{R}^3:

- $E = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \end{bmatrix} \right\}$
- $F = \{ \vec{u}_1, \vec{u}_2, \vec{u}_3 \} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$

(a) Find the transition matrix T from the basis E to the basis F. This is, T is a 3×3 matrix such that if $[\vec{w}]_E$ denotes the coordinates of a vector \vec{w} in \mathbb{R}^3 with respect to the basis E and $[\vec{w}]_F$ denotes the coordinates of \vec{w} with respect to the basis F, then

$$[\vec{w}]_F = T [\vec{w}]_E.$$

(b) If $\vec{w} = 3\vec{v}_1 + 2\vec{v}_2 - \vec{v}_3$ find the coordinates of \vec{w} with respect to the basis F.

Solution:

(a) Consider the matrices T_E and T_F whose columns are given, respectively, by the ordered vectors in E and F,

$$T_E = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix} \quad T_F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
Recall from lecture that the transition matrix T from E to F is given by $T_F^{-1}T_E$, this is

\[T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix} \]

(b) Using the transition matrix found in (a) and that the coordinates of \vec{w} with respect to the basis E are 3, 2, and -1, respectively,

\[T[\vec{w}]_E = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 8 \\ -5 \\ 3 \end{bmatrix} = [\vec{w}]_F. \]

Then $\vec{w} = 8\vec{u}_1 - 5\vec{u}_2 + 3\vec{u}_3$.

What you have to do. Write an M-file function that has as inputs two matrices of size $n \times n$ and a column vector of size $n \times 1$. The columns of each of the matrices constitute ordered bases, E and F, for \mathbb{R}^n and the components of the column vector are the coordinates of a vector \vec{w} of \mathbb{R}^n with respect to the basis E (compare with the warm up). The output of the function is the transition matrix T from basis E to basis F, and a column vector of size $n \times 1$ whose components are the coordinates of \vec{w} with respect to the basis F. Your code should produce an error message if the dimensions of the entered matrices and/or vector do not agree or if the columns of one of the entered matrices do not constitute a basis for \mathbb{R}^n.

Try the pseudo code `lab7taskI.p` to check how your program should work. Type

```matlab
>> [T,v]=lab7taskI(TE,TF,wE)
```

where TE and TF are matrices whose columns are the ordered bases, E and F, respectively, given in the appendix, and wE is the column vector whose components are the coordinates of the vector \vec{w} with respect to the basis E, given in the appendix.

APPENDIX.

(a) E, F and \vec{w} as in the warm up of TASK I.

(b) $E = \{\vec{v}_1, \vec{v}_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$, $F = \{\vec{u}_1, \vec{u}_2\} = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ -4 \end{bmatrix} \right\}$,

$\vec{w} = 4\vec{v}_1 - 5\vec{v}_2$.

(c) $E = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\}$ is the standard basis in \mathbb{R}^4, $F = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ where

\[
\begin{align*}
\vec{u}_1 &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}, & \vec{u}_2 &= \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, & \vec{u}_3 &= \begin{bmatrix} -2 \\ -1 \\ 2 \\ 3 \end{bmatrix}, & \vec{u}_4 &= \begin{bmatrix} 1 \\ -1 \\ -2 \\ 0 \end{bmatrix},
\end{align*}
\]
and \(\vec{w} = -\vec{e}_1 + 7\vec{e}_2 + 8\vec{e}_3 - 2\vec{e}_4. \)

(d) \(E = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \) as in part (c) and \(F = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\} \), the standard basis in \(\mathbb{R}^4 \), and \(\vec{w} = \vec{u}_1. \)

To check for error messages use:

(a) Dimensions do not agree:

\[
E = \{\vec{v}_1, \vec{v}_2\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} \right\}, \quad F = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}, \quad \vec{w} = 8\vec{v}_1 - 7\vec{v}_2.
\]

(b) One of the sets is not a basis for \(\mathbb{R}^n \):

\[
E = \{\vec{v}_1, \vec{v}_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}, \quad F = \{\vec{u}_1, \vec{u}_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}, \quad \vec{w} = 4\vec{v}_1 - 5\vec{v}_2.
\]