Khovanov-Rozansky Homology and Mutation

Thomas Jaeger

Michigan State University

Saturday, December 4, 2010

Knots in Washington XXXI
Outline

Conway Mutation
 Invariants and Mutation
 Statement of the Main Theorem
 Normalizing Orientation-Preserving Mutation

Khovanov-Rozansky Homology
 A State Model

Mutation Invariance
 Idea
 Key Lemma
 Application of the Lemma
 Proof of the Main Theorem

Future Directions
 Questions and Open Problems

These slides and a draft of my paper are available on my website at http://math.msu.edu/~tjaeger.
Invariants and Mutation

Many invariants cannot distinguish mutants:

- Alexander Polynomial
- (Colored) Jones Polynomial (Morton-Traczyk)
- HOMFLY-PT Polynomial
- Kauffman Polynomial
- Hyperbolic Volume (Ruberman)
- Double-Branched Cover
- \mathbb{Z}_2 and odd Khovanov Homology (Bloom, Wehrli)

However, there are some invariants that can tell mutants apart:

- Colored $\mathfrak{sl}(n)$ Polynomial and finite type invariants of order ≥ 11 (Cromwell-Morton)
- Knot Floer Homology (via Knot Genus)
Statement of the Main Theorem

Theorem (J.)

If two knots are related by positive (“orientation-preserving”) mutation and \(n \) is odd, then their reduced \(\mathfrak{sl}(n) \) homologies are isomorphic.

Positive and Negative Mutation

Of the 16 mutant pairs with 11 crossings, I found 5 that can be realized on the tangle below and thus can be realized by both positive and negative mutation, among them the Kinoshita-Terasaka - Conway pair.

\[
\begin{align*}
R_x & \\
R_y & \\
R_z &
\end{align*}
\]
Reduction to Braid Form

The two possible orientations of the endpoints of a tangle. Note that there is only one type of positive mutation in each case.

We can use a modification of the proof of Alexander’s Theorem to transform a tangle of type \(\uparrow\uparrow \) into what we call braid form.

The example from the beginning already is in braid form.
Reduction to Tangles of Type \leftrightarrow

If the inner tangle is of type \leftrightarrow, we can perform a topologically equivalent mutation on a tangle of type $\uparrow\uparrow$.
The $\mathfrak{sl}(n)$ Skein Module of Singular Braids

The $\mathfrak{sl}(n)$ skein module is generated by tangles modulo skein relations

$$\begin{align*}
\begin{array}{c}
\uparrow\downarrow - \downarrow\uparrow &= (q - q^{-1})\begin{array}{c}
\uparrow\downarrow
\end{array}, \\
\begin{array}{c}
\bigcirc
\end{array} &= q^n\begin{array}{c}
\uparrow
\end{array} \quad \text{and} \quad \begin{array}{c}
\bigotimes
\end{array} &= q^{-n}\begin{array}{c}
\uparrow
\end{array}.
\end{array}
\end{align*}$$

Theorem (Murakami, Ohtsuki, Yamada)

Set

$$\begin{align*}
\begin{array}{c}
\bigotimes
\end{array} := q\begin{array}{c}
\uparrow
\end{array} - q^{-1}\begin{array}{c}
\uparrow\downarrow
\end{array} + q^{-2}\begin{array}{c}
\downarrow\uparrow
\end{array} - \cdots
\end{align*}$$

to extend the invariant to singular tangles. Then

$$([k] = q^{-k+1} + q^{-k+3} + \ldots q^{k-1})$$

$$\begin{align*}
\begin{array}{c}
\bigotimes
\end{array} &= [n]\begin{array}{c}
\uparrow
\end{array}, \\
\begin{array}{c}
\bigotimes
\end{array} &= [n-1]\begin{array}{c}
\uparrow
\end{array}, \\
\begin{array}{c}
\bigotimes
\end{array} &= [2]\begin{array}{c}
\uparrow\downarrow
\end{array}, \\
\begin{array}{c}
\bigotimes
\end{array} + \begin{array}{c}
\bigotimes
\end{array} &= \begin{array}{c}
\bigotimes
\end{array} + \begin{array}{c}
\bigotimes
\end{array}.
\end{align*}$$

These relations determine the $\mathfrak{sl}(n)$ polynomial for closed fully singular braids.
Khovanov-Rozansky Homology of Singular Braids

Khovanov-Rozansky homology is a categorification of the $\mathfrak{sl}(n)$ polynomial. It has a particular simple form for fully singular braids: All complexes are supported in homological height 0 and satisfy the following isomorphisms.

\[
\begin{align*}
C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) & \cong C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) \{n-1\} \oplus \ldots \oplus C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) \{-n+1\} \\
C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) & \cong C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) \{n-2\} \oplus \ldots \oplus C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) \{-n+2\} \\
C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) & \cong C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) \{1\} \oplus C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) \{-1\} \\
C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) \oplus C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (1,0) {}; \node (c) at (1,1) {}; \node (d) at (0,1) {}; \draw[very thick, ->] (a) to (b); \draw[very thick, ->] (c) to (d); \end{tikzpicture}) & \cong C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture}) \oplus C^n(\begin{tikzpicture}[baseline, scale=0.5] \node (a) at (0,0) {}; \node (b) at (2,0) {}; \draw[very thick, ->] (a) to (b); \end{tikzpicture})
\end{align*}
\]

These complexes live in the homotopy category of chain complexes over the homotopy category of matrix factorizations with a certain potential associated to the endpoints.
Khovanov-Rozansky Homology of Braids

Using

\[C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) \cong C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) [-1] \rightarrow C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right) \{1\} \quad \text{and} \quad C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) \cong C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right) \{-1\} \rightarrow C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) [1] \]

we extend the invariant to braids via a “cube of resolutions”:

\[C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) \cong C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right) \{1\} \rightarrow C^n \left(\begin{array}{c} \downarrow \\ \uparrow \end{array} \right) \{2\} \rightarrow C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) \{1\} \rightarrow C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right) \{1\} \rightarrow C^n \left(\begin{array}{c} \nearrow \\ \nwarrow \end{array} \right) \{1\} \rightarrow C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right) \{2\} \]
Khovanov-Rozansky Homology of any tangle in braid form is isomorphic to a chain complex built out of direct sums of shifts of $C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right)$ and $C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right)$.
Idea of the proof

So far, we have expressed the inner tangle as a chain complex over a particularly simple category: the full subcategory of our category of matrix factorizations on $C^n \left(\begin{array}{c} \uparrow \\ \downarrow \end{array} \right)$ and $C^n \left(\begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \end{array} \right)$. Reflection/rotation (denoted by $\bar{\cdot}$) also has a simple description in this category.

Following the proof of mutation invariance for the $\text{sl}(n)$ polynomial, we'd like to be able to say that any such chain complex is invariant under $\bar{\cdot}$, but this is false. Instead, we will try to kill enough information to obtain a complex that is invariant under $\bar{\cdot}$ while retaining enough information to recover the homology of the link — provided that we are promised an endpoint of the tangle and its image under $\bar{\cdot}$ lie on the same component.

To do so, we will consider a certain mapping cone of the complex.
Idea of the proof

- So far, we have expressed the inner tangle as a chain complex over a particularly simple category: the full subcategory of our category of matrix factorizations on C^n (\[\uparrow \uparrow\]) and C^n (\[\leftrightarrow\]). Reflection/rotation (denoted by $\overline{\cdot}$) also has a simple description in this category.

- Following the proof of mutation invariance for the $\mathfrak{sl}(n)$ polynomial, we'd like to be able to say that any such chain complex is invariant under $\overline{\cdot}$, but this is false.
Idea of the proof

- So far, we have expressed the inner tangle as a chain complex over a particularly simple category: the full subcategory of our category of matrix factorizations on $C^n\begin{array}{c}\uparrow \\ \downarrow \end{array}$ and $C^n\begin{array}{c}\\ \end{array}$. Reflection/rotation (denoted by $\bar{\cdot}$) also has a simple description in this category.

- Following the proof of mutation invariance for the $\mathfrak{sl}(n)$ polynomial, we’d like to be able to say that any such chain complex is invariant under $\bar{\cdot}$, but this is false.

- Instead, we will try to kill enough information to obtain a complex that is invariant under $\bar{\cdot}$ while retaining enough information to recover the homology of the link — provided that we are promised an endpoint of the tangle and its image under $\bar{\cdot}$ lie on the same component.
Idea of the proof

- So far, we have expressed the inner tangle as a chain complex over a particularly simple category: the full subcategory of our category of matrix factorizations on $C^n \begin{pmatrix} \uparrow & \uparrow \\ \end{pmatrix}$ and $C^n \begin{pmatrix} \uparrow & \uparrow \\ \downarrow & \downarrow \\ \end{pmatrix}$. Reflection/rotation (denoted by $\overline{\cdot}$) also has a simple description in this category.

- Following the proof of mutation invariance for the $\mathfrak{sl}(n)$ polynomial, we’d like to be able to say that any such chain complex is invariant under $\overline{\cdot}$, but this is false.

- Instead, we will try to kill enough information to obtain a complex that is invariant under $\overline{\cdot}$ while retaining enough information to recover the homology of the link — provided that we are promised an endpoint of the tangle and its image under $\overline{\cdot}$ lie on the same component.

- To do so, we will consider a certain mapping cone of the complex.
Key Lemma

Let \mathcal{C} be an additive category and let $\bar{\cdot} : \mathcal{C} \to \mathcal{C}$ be a functor that is the identity on objects and an involution on morphisms. Furthermore, let f be an element in the center of \mathcal{C} and $\partial : \text{Hom}_\mathcal{C}(A, B) \to \text{Hom}_\mathcal{C}(A, B)$ be a \mathbb{Z}-linear operation with the following properties

- For $\phi \in \text{Hom}_\mathcal{C}(A, B)$, $\phi - \bar{\phi} = f_B \partial \phi = \partial \phi f_A$.
- Composable morphisms $\phi \in \text{Hom}_\mathcal{C}(A, B)$ and $\psi \in \text{Hom}_\mathcal{C}(B, C)$ satisfy $\partial(\psi \phi) = \partial \psi \phi + \bar{\psi} \partial \phi = \partial \psi \bar{\phi} + \psi \partial \phi$.

If C is a chain complex over \mathcal{C} with differential d, then f gives rise to a chain morphism $f_C : C \to C$. Let \bar{C} be the chain complex obtained by applying $\bar{\cdot}$ to the differential of C. Then the mapping cones $\text{Cone}(f_C)$ and $\text{Cone}(f_{\bar{C}})$ are isomorphic.

Proof (mod 2).

$$
\begin{pmatrix} d & f_C \\ f_C & d \end{pmatrix} \cup C[-1] \oplus C \xrightarrow{\begin{pmatrix} I & \partial d \\ I & I \end{pmatrix}} C[-1] \oplus C \cup \begin{pmatrix} \bar{d} & \bar{d} \\ f_{\bar{C}} & \bar{d} \end{pmatrix}
$$
Warmup

One object: \(x = \uparrow \uparrow \bigcirc \uparrow \uparrow \bigcirc \uparrow \uparrow \downarrow = y \) / \((x^n = y^n = 0) \)

Recall that \(\phi - \bar{\phi} = \partial \phi f \) and \(\partial(\psi \phi) = \partial \psi \phi + \bar{\psi} \partial \phi \).

Reflection is given by \(\bar{x} = \pm y \) and \(\bar{y} = \pm x \). Set \(f = x \mp y \). It follows that

\[
\begin{align*}
f \partial x &= x - \bar{x} = x \mp y \quad \Rightarrow \partial x = 1 \\
\partial y &= y - \bar{y} = y \mp x \quad \Rightarrow \partial y = \mp 1
\end{align*}
\]

We compute

\[
\begin{align*}
\partial(x^2) &= \partial x x + \bar{x} \partial x = x \pm y \\
\partial(y^2) &= \partial y y + \bar{y} \partial y = -(x \pm y) \\
\partial(x^3) &= \partial x x^2 + \bar{x} \partial(x^2) = x^2 \pm y(x \pm y) = x^2 \pm xy + y^2 \\
\partial(y^3) &= \partial y y^2 + \bar{y} \partial(y^2) = \mp y^2 \pm x(- (x \pm y)) = \mp y^2 - xy \mp y^2
\end{align*}
\]
Warmup

One object: \(x = \uparrow \uparrow \bigcirc \uparrow \bigcirc \uparrow \uparrow = y \) \((x^n = y^n) \)

Recall that \(\phi - \bar{\phi} = \partial \phi f \) and \(\partial(\psi \phi) = \partial \psi \phi + \bar{\psi} \partial \phi \).

Reflection is given by \(\bar{x} = -y \) and \(\bar{y} = -x \). Set \(f = x + y \). It follow that

\[
\begin{align*}
 f \partial x &= x - \bar{x} = x + y & \Rightarrow \partial x &= 1 \\
 f \partial x &= y - \bar{y} = y + x & \Rightarrow \partial y &= +1
\end{align*}
\]

We compute

\[
\begin{align*}
 \partial(x^2) &= \partial x x + \bar{x} \partial x = x - y \\
 \partial(y^2) &= \partial y y + \bar{y} \partial y = -(x - y) \\
 \partial(x^3) &= \partial x x^2 + \bar{x} \partial(x^2) = x^2 - y(x - y) = x^2 - xy + y^2 \\
 \partial(y^3) &= \partial y y^2 + \bar{y} \partial(y^2) = + y^2 - x(-(x - y)) = + y^2 - xy + y^2
\end{align*}
\]
The Category Associated to 2-Tangles

\[R = \mathbb{Q}[a, b, c, d]/(a + b = c + d), \quad q \in R \text{ a certain polynomial of degree } n - 1. \]

Objects

\[
\begin{array}{c}
R \xleftarrow{\begin{array}{c}
\frac{c-a}{c-b} q
\end{array}} R \\
R \xleftarrow{\begin{array}{c}
\frac{(c-a)(c-b)}{q}
\end{array}} R
\end{array}
\]

Morphisms

\[
\begin{array}{ccc}
R & \xleftarrow{\ast} & R \\
\downarrow & \ast & \downarrow \\
R & \xleftarrow{\ast} & R
\end{array}
\]

(modulo homotopy)

Reflection

Reflection \(R_y \) is given by the ring homomorphism \(\tilde{\cdot} : R \rightarrow R, \ a \mapsto -b, \ b \mapsto -a, \ c \mapsto -d, \ d \mapsto -c. \) Here we use that \(n \) is odd.

Differential

\(f = a + b = c + d, \ \partial a = \partial b = \partial c = \partial d = 1, \) hence \(\partial(c - a) = 0 \) and \(\partial(c - a)(c - b) = 0 \) and also \(\partial q = 0, \) so we may define \(\partial(x, y) = (\partial x, \partial y) \) for any morphism \((x, y). \) This operation also descends to homotopy.
Wrapping it up

There is an action of the “edge ring” on $C_n(T)$ such that $a \simeq b$ if edges a and b lie on the same component of the tangle T. For a link L, reduced Khovanov-Rozansky homology (wrt. the component that a lies on) can be defined by $H_n(L) = H^\ast \left(\text{Cone} \left(C_n(L) \xrightarrow{a} C_n(L) \right) \right)$.

Let $K_1 = T \cup T'$ and $K_2 = \bar{T} \cup T'$ be mutant knots. Applying the Lemma to T, we see that

$$\text{Cone} \left(C_n(T) \xrightarrow{a+b} C_n(T) \right) \cong \text{Cone} \left(C_n(\bar{T}) \xrightarrow{a+b} C_n(\bar{T}) \right)$$

Closing up (by taking $\otimes C_n(T')$), we get

$$\text{Cone} \left(C_n(K_1) \xrightarrow{a+b} C_n(K_1) \right) \cong \text{Cone} \left(C_n(K_2) \xrightarrow{a+b} C_n(K_2) \right)$$

$$\text{Cone} \left(C_n(K_1) \xrightarrow{2a} C_n(K_1) \right) \cong \text{Cone} \left(C_n(K_2) \xrightarrow{2a} C_n(K_2) \right)$$
Questions

- Is it possible to lift some of the restrictions of the Theorem? In particular,
 - Can the proof be extended to unreduced Homology?
 - Can we extend the argument to negative mutation?
 - How about even n, particularly $n = 2$, i.e. Khovanov Homology?
- Can the method be applied to other homological knot invariants?
 - Rasmussen’s s-invariant?
 - HOMFLY-PT Homology? (Answer: Yes)
 - Rasmussen’s spectral sequence from $\mathfrak{sl}(n)$ to HOMFLY-PT Homology?
 - Can Bloom’s invariance result for odd Khovanov homology be re-proved using Putyra’s formalism?
- Can a generalization of the Lemma be used to show invariance of \mathbb{Z}_2-Khovanov Homology under genus-2 mutation?