Summary of Teaching Evaluation
Adrian Jenkins

This note is dedicated to a summary of my teaching evaluation data at Wisconsin and Purdue. Included in each listing is a course title, a short description of the course as I see it, and a numerical score (for a more official course description, please consult the Purdue or Wisconsin Mathematics catalogues). The number listed is the average raw data for the following question: “Overall, the quality of this teacher’s instruction is · · ·.” The students rate this question on a discrete scale from 1 to 5, with 1 being “very poor,” 2 “poor,” 3 “fair,” 4 “good,” and 5 “excellent.” It is often required of job applicants to give a sampling of their evaluation data (or, more generally, “evidence of teaching excellence”), and this question seems to be the most broad-based of all. Note that for some courses, two numbers will follow the course listing; this means simply that I taught two sections of the same course. Also, I have denoted when my role in the course was that of a teaching assistant.

I do not include any data for Kansas State University, as there is no requirement for evaluations in any class (see also my teaching statement, which illustrates some of my personal problems in considering evaluations at all). I lay myself bare to the charge that such data is less meaningful without some control group with which to compare. While I do not have a full complement of such data, if you seek something of this nature, please contact me at adjenkins@math.ksu.edu; I will get you any data I can find.

Purdue University

(1) **MA174 - Multivariable Calculus; Spring 2008**
 This course is a version of multivariate calculus specifically for second-semester freshman students. Engineering students receive honors credit for this course.
 Evaluation: 4.8

(2) **MA271 - Several Variable Calculus; Fall 2007**
 This course is an accelerated version of the standard Calculus 3 offered in many universities. All of the students in the course are freshman, with various majors, but all share a strong affinity toward mathematics.
 Evaluation: 4.9, 4.7

(3) **MA525 - Introduction to Complex Analysis; Spring 2007**
 This course is meant as an introduction to complex analysis for graduate students in engineering. A minority of the students are graduate math students (most often, those without adequate preparation for the qualifier prep course), and undergraduate math majors seeking a more challenging version of complex variables.
 Evaluation: 4.8

(4) **MA271 - Several Variable Calculus; Fall, 2006 (2 sections)**
 Evaluations: 4.7, 4.5
(5) **MA425 - Complex Analysis; Spring, 2006**
This course is meant as an introduction to complex analysis and is meant for advanced undergraduate students. The pace of this course is significantly slower than that of MA525, and many topics (such as solution techniques for the Dirichlet problem) are not broached here.
Evaluation: 4.9

(6) **MA266 - Ordinary Differential Equations; Spring, 2006**
This course is the standard ODE course for engineering and science students. A first course in linear algebra is expected. The course is almost exclusively populated by engineering students, with a minority of science students. The year-level of the students present varies wildly.
Evaluation: 4.9

(7) **MA266 - Ordinary Differential Equation; Fall, 2005 (2 sections)**
Evaluations: 4.8, 4.8

University of Wisconsin

(1) **Math 132 - Mathematical Models; Fall, 2003 (2 sections)**
This is the third of a three-semester sequence of mathematical content courses aimed at prospective primary (K-7) educators. The course essentially covers the modeling and solution of problems via basic probability and statistical considerations.
Evaluation: 3.71

(2) **Math 130 - Arithmetical Problem Solving; Spring 2003 (2 sections)**
This is the first of a three-semester sequence of mathematical content courses aimed at prospective primary (K-7) educators. The course covers a wide spectrum of topics, mostly geared toward a fundamental understanding and appreciation of algorithmic procedure in arithmetical operations.
Evaluation: 4.24

(3) **Math 221 - Calculus and Analytic Geometry I, Fall, 2002 (2 sections - teaching assistant)**
This is the first course of a standard three-semester calculus series for science and engineering majors.
Evaluation: 4.86

(4) **Math 222 - Calculus and Analytic Geometry II, Spring, 2002**
This is the second course of a standard three-semester calculus series for science and engineering majors.
Evaluation: 4.91
(5) **Math 221 - Calculus and Analytic Geometry I**, Fall, 2001 (2 sections - teaching assistant)
Evaluation: 4.88

(6) **Math 112 - Algebra**, Spring, 2001 (2 sections)
This is a general math requirement course, mostly populated by non-science majors. This could serve as the “college algebra” part of a “College Algebra and Trigonometry,” precalculus-type course, but for many students, this is a terminal class.
Evaluation: 4.70

(7) **Math 375 - Topics in Multi-variable Calculus and Linear Algebra**, Fall, 2001 (2 sections - teaching assistant)
This is the third of a two-year (four-semester) Honors sequence in mathematics, the whole of which covers all of calculus, linear algebra and differential equations. The students populating this course are often math majors, although for my course a large number of high school students was present as well. The topics here include matrix theory, partial differentiation, and multi-variable integration.
Evaluation: 4.33

(8) **Math 234 - Calculus: Functions of Several Variables**, Spring, 2000 (2 sections - teaching assistant)
This is the third of a standard three-semester calculus series for science and engineering majors.
Evaluation: 4.84

(9) **Math 222 - Calculus and Analytic Geometry II**, Fall, 1999 (2 sections - teaching assistant)
Evaluation: 4.81

(10) **Math 272 - Calculus with Algebra and Trigonometry II**, Spring, 1999 (2 sections - teaching assistant)
This course is the second course of a two-semester sequence designed for science and engineering majors whose precalculus background is too weak to enter the standard calculus sequence. The series covers the essential components of a full-year precalculus course, and a one-semester calculus course. Students move on to Calculus and Analytic Geometry II after this course.
Evaluation: 4.90

(11) **Math 171 - Calculus with Algebra and Trigonometry I**, Fall, 1998 (2 sections - teaching assistant)
This course is the first course of a two-semester sequence designed for science and engineering majors whose precalculus background is too weak to enter the standard calculus sequence. The series covers the essential components of a full-year precalculus course, and a one-semester calculus course. Students move on to Calculus and Analytic Geometry II after this sequence.
Evaluation: 4.50