Wave scattering by many small particles and creating materials with a desired refraction coefficient

A.G. Ramm

Mathematics Department,
Kansas State University,
Manhattan, KS66506, USA
ramm@math.ksu.edu
www.math.ksu.edu/~ramm
Abstract

The novel points in this work are:
1) Asymptotic and numerical methods for solving wave scattering problem by many small bodies embedded in an inhomogeneous medium.
2) Derivation of the equation for the field in the limit \(a \to 0 \), where \(a \) is the characteristic size of the bodies (particles), and their number \(M = M(a) \) tends to infinity at a suitable rate. Multiple scattering is taken into account.
3) A recipe for creating materials with a desired refraction coefficient by embedding many small particles in a given material.
4) Discussion of possible applications:
 a) creating materials with negative refraction,
 b) creating materials with a desired radiation pattern.
5) A novel approach to homogenization theory.
Recipe for creating materials with a desired refraction coefficient:

Step 1. Given the original refraction coefficient $n_0^2(x)$ and the desired refraction coefficient $n^2(x)$, calculate $p(x)$ by formula

$$p(x) = k^2[n_0^2(x) - n^2(x)].$$

This step is trivial.
Step 2. Given \(p(x) = 4\pi h(x)N(x) \), calculate the functions \(h(x) \) and \(N(x) \). These functions satisfy the following restrictions:

\[
\text{Im} \ h(x) \leq 0, \quad N(x) \geq 0.
\]

This step is also trivial, and it has many solutions. For example, one can fix an arbitrary \(N(x) > 0 \), and then find \(h(x) = h_1(x) + ih_2(x) \), where \(h_1 = \text{Re} \ h, \ h_2 = \text{Im} \ h \), by the formulas

\[
h_1(x) = \frac{p_1(x)}{4\pi N(x)}, \quad h_2(x) = \frac{p_2(x)}{4\pi N(x)},
\]

where \(p_1 = \text{Re} \ p, \ p_2 = \text{Im} \ p \). The condition \(\text{Im} \ h \leq 0 \) holds if \(\text{Im} \ p \leq 0 \), i.e., \(\text{Im} \ [n_0^2(x) - n^2(x)] \leq 0. \)
Abstract

Scattering problem

Many-body scattering problem

Step 3. Prepare \(M = \frac{1}{a^{2-\kappa}} \int_D N(x)dx[1 + o(1)] \) small balls \(B_m(x_m, a) \) with the boundary impedances \(\zeta_m = \frac{h(x_m)}{a^\kappa}, \)

\(0 \leq \kappa < 1, \) where the points \(x_m, 1 \leq m \leq M, \) are distributed in \(D \) according to formula \(N(\Delta) = \frac{1}{a^{2-\kappa}} \int_\Delta N(x)dx[1 + o(1)], \)

\(\Delta \subset D \) is an arbitrary open subset. Embed in \(D \) \(M \) balls \(B_m(x_m, a) \) with boundary impedance \(\zeta_m, \) \(d = O(a^{(2-\kappa)/3}). \)

The material, obtained after the embedding of these \(M \) small balls will have the desired refraction coefficient \(n^2(x) \) with an error that tends to zero as \(a \to 0. \)

Step 3 is the only non-trivial step in this recipe from the practical point of view.
Technological problems

The first technological problem is:
How can one embed many, namely \(M = M(a) \), small balls in a given material so that the centers of the balls are points \(x_m \) distributed as desired?
The stereolitography process can be used.

The second technological problem is:
How does one prepare a ball \(B_m \) of small radius \(a \) with boundary impedance \(\zeta_m = \frac{h(x_m)}{a^\kappa} \), \(0 \leq \kappa < 1 \) which has a desired frequency dependence?

Remark: It is not necessary to have large boundary impedance: if \(\kappa = 0 \), or \(\kappa = O(\frac{1}{|\ln a|}) \), then \(\zeta_m \) is bounded. However, if \(\kappa = 0 \), then \(M = O(a^{-2}) \), so more particles have to be embedded.
Scattering problem in the absence of embedded particles

\[L_0u_0 := [\nabla^2 + k^2 n_0^2(x)]u_0 := [\nabla^2 + k^2 - q_0(x)]u_0 = 0 \text{ in } \mathbb{R}^3, \]
\[u_0 = e^{ik\alpha \cdot x} + v_0, \quad \lim_{r \to \infty} r(u_r -iku) = 0. \]
\[\text{Im } n_0^2(x) \geq 0, \quad \alpha \in S^2, \quad k = \text{const} > 0. \]
\[L_0G = -\delta(x - y) \text{ in } \mathbb{R}^3. \]
\[n_0^2(x) = 1 - k^{-2}q_0(x), \quad q_0(x) = k^2 - k^2 n_0^2(x), \quad \text{Im } q_0(x) \leq 0, \]
\[n_0^2(x) = 1 \text{ in } D' := \mathbb{R}^3 \setminus D, \quad q_0(x) = 0 \text{ in } D'. \]
Many-body scattering problem

\[
\begin{aligned}
L_0 u_M &= 0 \text{ in } \Omega' := \mathbb{R}^3 \setminus \bigcup_{m=1}^{M} D_m; \\
\frac{\partial u_M}{\partial N} &= \zeta_m u_M \text{ on } S_m := \partial D_m, \\
u_M &= u_0 + v_M,
\end{aligned}
\]

where N is the outer unit normal to S_m, and $h(x) \in C(D)$ is an arbitrary function, $h = h_1 + ih_2$, $h_2 \leq 0$, ζ_m is impedance, $d := \min_{m \neq j} \text{dist} (x_m, x_j)$.

A.G. Ramm

Wave scattering
Basic assumptions

Let $n_0^2 := \max_{x \in \mathbb{R}^3} |n_0^2(x)|$. We assume that:

$$kn_0a \ll 1, \quad d \gg a,$$

$$N(\Delta) := \sum_{x_m \in \Delta} 1 = \frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) dx [1 + o(1)], \quad a \to 0. \quad (*)$$

Here $N(x)a^{-(2-\kappa)} \geq 0$ is the density of the distribution of particles, d is the minimal distance between neighboring particles,

$$d = O(a^{(2-\kappa)/3}). \quad (**)$$

$$M = M(a) \sim O(a^{-(2-\kappa)}), \quad 0 \leq \kappa \leq 1.$$

Since $d^{-3} = O(M)$, relation (**) follows from (*).
Representation of the solution

\[u_M(x) = u_0(x) + \sum_{m=1}^{M} \int_{S_m} G(x, t) \sigma_m(t) dt = \]

\[= u_0(x) + \sum_{m=1}^{M} G(x, x_m) Q_m + \sum_{m=1}^{M} J_m. \]

\[Q_m := \int_{S_m} \sigma_m(t) dt, \quad J_m := \int_{S_m} [G(x, t) - G(x, x_m)] \sigma_m(t) dt, \]

\[I_m := |G(x, x_m) Q_m|. \]

Basic result:

\[|J_m| \ll I_m, \quad a \to 0. \]
Impedance bc (boundary condition)

For the *impedance boundary condition* the limiting field u solves the equation:

$$u(x) = u_0(x) - \int_D G(x, y)p(y)u(y)dy,$$

where

$$p(y) = 4\pi N(y)h(y),$$

$$\zeta_m = \frac{h(x_m)}{a^\kappa}, \quad 0 \leq \kappa < 1.$$

If the small bodies D_m are of arbitrary shape, such that $|S_m| = ca^2$, then the factor 4π is replaced by the factor c. This factor may depend on m if the small bodies are not identical.
Effective field 1

If \(|J_m| \ll I_m \), then, as \(a \to 0 \), one has

\[
u_M(x) = u_0(x) + \sum_{m=1}^{M} G(x, x_m) Q_m, \quad |x - x_m| \geq a.
\]

Define effective field acting on \(m \)-th particle:

\[
u_e := u_e^{(m)} := u_M(x) - \int_{S_m} G(x, t) \sigma_m(t) dt,
\]

If \(|x - x_m| \gg a \), then \(u_e \sim u_M \) as \(a \to 0 \). We prove below that

\[
Q_m \sim -4\pi u_e(x_m) h(x_m) a^{2-\kappa}.
\]
The equation for the effective field $u_e(x)$, as $a \to 0$, is

$$u_e(x) = u_0(x) - 4\pi \sum_{m=1}^{M} G(x, x_m) u_e(x_m) h_m a^{2-\kappa},$$

where $x \in \Omega', \quad \Omega' := \mathbb{R}^3 \setminus \bigcup_{m=1}^{M} D_m, \quad h_m := h(x_m)$.

Here h_m are known, but $u_m := u_e(x_m)$ are unknown.

To calculate u_m one can use a linear algebraic system (LAS):

$$u_j = u_{0j} - 4\pi a^{2-\kappa} \sum_{m=1, m \neq j}^{M} G(x_j, x_m) h_m u_m, \quad 1 \leq j \leq M.$$

The order of this system is substantially reduced: see next slide.
Reduction of the order of LAS.

To reduce the order M of this system, consider a partition of D into a union of small cubes $\Delta_p, 1 \leq p \leq P, P \ll M, y_p \in \Delta_p, \text{diam} \Delta_p \gg d$. Then a linear algebraic system (LAS) for u_p is

\[
 u_q = u_{0q} - 4\pi \sum_{p \neq q}^P G(y_q, y_p) h(y_p) u_p N(y_p) |\Delta_p|,
\]

where $1 \leq q \leq P, P \ll M, u_q = u(y_q), u_{0q} = u_0(y_q)$. The LAS (*) is used for efficient numerical solution of many-body scattering problems when the scatterers are small.
How efficient can this reduction be?

Let the small particles be distributed in a cube with side $L = 10^{-1}\text{m}$, $a = 10^{-8}\text{m}$, $d = 10^{-6}\text{m}$. Then $M = \left(\frac{L}{d}\right)^3 = 10^{15}$.

Let the side b of the partition cubes Δ_p be $b = a^{1/6} = 10^{-\frac{4}{3}}\text{m}$. Then $P = \left(\frac{L}{b}\right)^3 = 10$. The reduction of the order M of the LAS in this example is from 10^{15} to 10.

If $b = a^{1/4} = 10^{-2}\text{m}$, then $P = \left(\frac{L}{b}\right)^3 = 10^3$. In this case the reduction of the order M of the LAS is from 10^{15} to 10^3.
Asymptotic formula for Q_m

\[u_{eN} - \zeta_m u_e + \frac{A_m \sigma_m - \sigma_m}{2} - \zeta_m T_m \sigma_m = 0 \quad \text{on } S_m. \]

\[A_m \sigma_m := 2 \int_{S_m} \frac{\partial G(s, t)}{\partial N_s} \sigma_m(t) dt, \quad T_m \sigma_m := \int_{S_m} G(s, t) \sigma_m(t) dt. \]

\[G(x, y) = \frac{1}{4\pi |x - y|} [1 + O(|x - y|)], \quad |x - y| \to 0. \]

\[\frac{4}{3} \pi a^3 \Delta u_e(x_m) - \zeta_m 4\pi a^2 u_e(x_m) = Q_m + \zeta_m \int_{S_m} ds \int_{S_m} \frac{\sigma_m(t) dt}{4\pi |s - t|}, \]

\[\int_{S_m} A \sigma_m dt = - \int_{S_m} \sigma_m dt, \]
Abstract

Scattering problem

Many-body scattering problem

Derivation of the formula for \(Q_m \)

Formula for \(\sigma_m \)

\[
\int_{S_m} \frac{ds}{4\pi|s-t|} = a
\]

\[
\frac{4}{3} \pi a^3 \Delta u_e(x_m) - 4\pi \zeta_m u_e(x_m) a^2 = Q_m (1 + \zeta_m a).
\]

\[
Q_m = \frac{a^3 \left[\frac{4\pi}{3} \Delta u_e(x_m) - 4\pi u_e(x_m) \zeta_m a^{-1} \right]}{1 + \zeta_m a}.
\]

If \(\zeta_m = \frac{h(x_m)}{a^\kappa} \), \(\kappa < 1 \), then

\[
Q_m \sim -4\pi u_e(x_m) h(x_m) a^{2-\kappa}.
\]
Asymptotic formula for σ_m

\[u_M = u_e + \sigma_m \int_{S_m} \frac{dt}{4\pi|x-t|} = u_e + \frac{\sigma_m a^2}{|x|}, \quad |x - x_m| = O(a). \]

\[u_e N - h(x_m) \frac{1}{a^\kappa} u_e - \sigma_m - \frac{h(x_m)}{a^\kappa} \sigma_m a = 0 \]

\[\sigma_m = \frac{u_e N - h(x_m) u_e(x_m) a^{-\kappa}}{1 + h(x_m) a^{1-\kappa}} \]

If $\kappa < 1$, $a \to 0$, then $\sigma_m \sim -h(x_m) u_e(x_m) a^{-\kappa}$.

A.G. Ramm

Wave scattering
Why is $I_m \gg |J_m|$?

\[
|G(x, x_m)Q_m| = I_m \sim \frac{a^{2-\kappa}}{d}, \quad d \sim a^\theta, \quad \theta \in (0, 1).
\]

\[
J_m \sim \max \left\{ \frac{a}{d} + ka \right\} \frac{a^{2-\kappa}}{d}, \quad ka \ll 1, \quad \frac{a}{d} \ll 1.
\]

$I_m \gg J_m$ if $0 < \theta < 1$.

Formula for calculating the field $u_M(x)$ is:

\[
u_M(x) = u_0(x) - 4\pi \sum_{m=1}^{M} G(x, x_m) h(x_m) u_e(x_m) a^{2-\kappa},
\]

where

\[
|x - x_m| \geq a^\theta, \quad d \geq O(a^\theta), \quad 0 < \theta < 1.
\]
Limiting procedure as $a \to 0$

\[
4\pi \sum_{m=1}^{M} G(x, x_m) h(x_m) u_e(x_m) a^{2-\kappa} = 4\pi \sum_{p=1}^{P} G(x, y^{(p)}) h(y^{(p)}) u_e(y^{(p)}).
\]

\[
a^{2-\kappa} \sum_{x_m \in \Delta_p} 1 = 4\pi \sum_{p=1}^{P} G(x, y^{(p)}) h(y^{(p)}) u_e(y^{(p)}) N(y^{(p)}) |\Delta_p|(1+\varepsilon_p)
\]

\[
\to \int_D G(x, y)p(y)u(y)dy, \quad p(y) := 4\pi h(y)N(y).
\]

\[
\mathcal{N}(\Delta_p) = a^{-(2-\kappa)} \int_{\Delta_p} N(x)dx[1 + o(1)], \quad a \to 0.
\]

\[
u(x) = u_0(x) - \int_D G(x, y)p(y)u(y)dy.
\]
An auxiliary lemma

Lemma. If \(f \in C(D) \) and \(x_m \) are distributed in \(D \) so that

\[
N(\triangle) = \frac{1}{\varphi(a)} \int_{\triangle} N(x) \, dx \left[1 + o(1)\right], \quad a \to 0,
\]

for any subdomain \(\triangle \subset D \), where \(\varphi(a) \geq 0 \) is a continuous, monotone, strictly growing function, \(\varphi(0) = 0 \), then

\[
\lim_{a \to 0} \sum_{x_m \in D} f(x_m) \varphi(a) = \int_D f(x) N(x) \, dx.
\]

Remark: *This lemma holds for bounded \(f \) with the set of discontinuities of Lebesgue’s measure zero. It can be generalized to a class of unbounded \(f \).*
Proof of the Lemma

Proof. Let \(D = \bigcup_p \Delta_p \) be a partition of \(D \) into a union of small cubes \(\Delta_p \), having no common interior points. Let \(|\Delta_p| \) denote the volume of \(\Delta_p \), \(\delta := \max_p \text{diam} \Delta_p \), and \(y^{(p)} \) be the center of the cube \(\Delta_p \). One has

\[
\lim_{a \to 0} \sum_{x_m \in D} f(x_m) \varphi(a) = \lim_{a \to 0} \sum_{y^{(p)} \in \Delta_p} f(y^{(p)}) \varphi(a) \sum_{x_m \in \Delta_p} 1
\]

\[
= \lim_{a \to 0} \sum f(y^{(p)}) N(y^{(p)}) |\Delta_p|[1 + o(1)] = \int_D f(x) N(x) dx.
\]

The last equality holds since the preceding sum is a Riemannian sum for the continuous function \(f(x) N(x) \) in the bounded domain \(D \). Thus, the Lemma is proved. \(\square \)
New equation for the limiting effective field

\[u(x) = u_0(x) - \int_D G(x, y)p(y)u(y)dy, \quad p(x) = 4\pi h(x)N(x). \]

\[Lu := [\nabla^2 + k^2 - q(x)]u = 0, \quad k^2 - q(x) := k^2n^2(x). \]

\[L = L_0 - p(x) := \nabla^2 + k^2 - q_0(x) - 4\pi h(x)N(x). \]

New refraction coefficient \(n^2(x) \) and new potential \(q(x) \) are in 1-to-1 correspondence:

\[n^2(x) = 1 - k^{-2}q(x); \quad q(x) = q_0(x) + p(x). \]

\[k^2[n_0^2(x) - n^2(x)] = p(x). \]
Creating new materials

Step 1.

\[\{n^2(x), n_0^2(x)\} \Rightarrow p(x) = k^2(n_0^2 - n^2). \]

Step 2.

Given \(p(x) = p_1 + ip_2 \), find \(\{h(x), N(x)\} \).

Here \(h(x) = h_1(x) + ih_2(x) \), \(N(x) \geq 0 \), \(h_2(x) \leq 0 \).

We have \(p(x) = 4\pi N(x)h(x) \). Thus,

\[
 h_1(x) = \frac{p_1(x)}{4\pi N(x)}, \quad h_2(x) = \frac{p_2(x)}{4\pi N(x)}.
\]

There are many solutions, because \(N(x) \geq 0 \) can be arbitrary.
Step 3.
Embed $\mathcal{N}(\Delta_p) = \frac{1}{a^{2-\kappa}} \int_{\Delta_p} N(x) dx$ small particles in Δ_p, where $\bigcup_p \Delta_p = D$.

Physical properties of these particles are given by their boundary impedances $\zeta_m = \frac{h(y^{(p)})}{a^\kappa}$ for all $x_m \in \Delta_p$.

The distance between neighboring particles is $d = O(a^{\frac{2-\kappa}{3}})$.

Theorem. The resulting new material has the function $n^2(x)$ as its refraction coefficient with the error which tends to 0 as $a \to 0$.

Remark. The total volume V_p of the embedded particles in the limit $a \to 0$ is zero.

Proof. Since $\kappa \geq 0$, one has:

$$V_p = \lim_{a \to 0} O(a^3/a^{2-\kappa}) = \lim_{a \to 0} O(a^{1+\kappa}) = 0.$$
Technological problems

The first technological problem is:
How can one embed many, namely $M = M(a)$, small balls in a given material so that the centers of the balls are points x_m distributed as desired?
The stereolithography process and chemical methods for growing small particles can be used.

The second technological problem is:
How does one prepare a ball B_m of small radius a with boundary impedance $\zeta_m = \frac{h(x_m)}{a^\kappa}$, $0 \leq \kappa < 1$, which has a desired frequency dependence?

Remark: It is not necessary to have large boundary impedance: if $\kappa = 0$, or $\kappa = O\left(\frac{1}{\ln a}\right)$, then ζ_m is bounded. However, if $\kappa = 0$, then $M = O(a^{-2})$, so more particles have to be embedded.
Playing with numbers

\[\mathcal{N} \sim 10^6; \quad \mathcal{N} \sim \frac{1}{a^{2-\kappa}}; \quad d \sim a^{(2-\kappa)/3} \]

\[\mathcal{N} = 10^6; \quad \kappa = 1, \quad a = 10^{-6}; \quad d = 10^{-2}. \]

\[\mathcal{N} = 10^6; \quad \kappa = 1/2, \quad a = 10^{-4}; \quad d = 10^{-2}. \]

The difference between the solution of the limiting integral equation for the effective field and the solution to the linear algebraic system for \(u_e(x_m) \) is \(O(1/n) \), where \(1/n \) is the side of a partition cube.
Spatial dispersion. Negative refraction

\[u = \sum_k a(k) e^{i[k \cdot r - \omega(k)t]}, \quad |k - \overline{k}| + |\omega(k) - \omega(\overline{k})| < \delta \]

\[v_g = \nabla_k \omega(k), \quad v_p = \frac{\omega}{|k|} k^0. \]

\[\nabla_k |k| = k^0 := \frac{k}{|k|}; \quad \frac{\omega^2 n^2}{c^2} = k^2, \quad \frac{\omega n}{c} = |k|. \]

\[\left[\frac{n}{c} + \frac{\omega}{c} \frac{\partial n}{\partial \omega} \right] \nabla_k \omega = k^0. \]

\[\{ v_g = -\text{const} \cdot v_p, \quad \text{const} > 0 \} \iff \text{negative refraction}. \]

\[n + \omega \frac{\partial n}{\partial \omega} < 0 \]
If $\omega > 0$, $\omega = \omega(k)$, $k := |k|$, then $v_p \cdot v_g = \omega'(k) \frac{\omega}{k} < 0$, provided that

$\omega'(|k|) < 0$.

Indeed,

$$v_g := \nabla_k \omega(k) = \omega'(k) k^0,$$

$$v_p := \frac{\omega}{k} k^0$$

$$\nabla_k \omega(k) \cdot v_p = \omega'(k) \frac{\omega}{k},$$

$k^0 := k/k$.

Terminology in optics:

Negative refraction means v_g *is directed opposite to* v_p;
Negative index means that $\epsilon < 0$ *and* $\mu < 0$.
Inverse scattering with data at fixed energy and fixed incident direction

\[
\left[\nabla^2 + k^2 - q(x) \right] u = 0 \text{ in } \mathbb{R}^3, \quad u = e^{ik\alpha \cdot x} + v := u_0 + v,
\]

\[
v = A(\beta) \frac{e^{ikr}}{r} + o\left(\frac{1}{r} \right), \quad r = |x| \to \infty, \quad \frac{x}{r} := \beta,
\]

\[
A(\beta) = -\frac{1}{4\pi} \int_D e^{-ik\beta \cdot x} h(x) dx, \quad h(x) := q(x)u(x, \alpha).
\]

Here \(\alpha \) is a unit vector in the direction of propagation of the incident wave, \(A(\beta) \) is the scattering amplitude. **We assume that \(\alpha \) and \(k > 0 \) are fixed.**
Inverse Scattering Problem with fixed energy and fixed incident direction

IP (inverse problem): Given \(f(\beta) \in L^2(S^2) \), \(\alpha \in S^2 \), \(k > 0 \), and \(\epsilon > 0 \), \(D \subset \mathbb{R}^3 \) (a bounded domain), find \(q \in L^2(D) \) such that

\[
\| f(\beta) - A(\beta) \|_{L^2(S^2)} < \epsilon. \tag{2}
\]

A priori it is not clear that this problem has a solution. We prove that it has a solution. If this **IP** has a solution, then it has infinitely many solutions because small variations of \(q \) lead to small variations of \(A(\beta) \).
Claim 1. The set \(\{ \int_D e^{-ik\beta \cdot x} h(x) dx \} \forall h \in L^2(D) \) is dense in \(L^2(S^2) \).

Corollary 1. Given \(f \in L^2(S^2) \) and \(\epsilon > 0 \), one can find \(h \in L^2(D) \) such that
\[
\| f(\beta) + \frac{1}{4\pi} \int_D e^{-ik\beta \cdot x} h(x) dx \| < \epsilon.
\]

Claim 2. The set \(\{ q(x) u(x, \alpha) \} \forall q \in L^2(D) \) is dense in \(L^2(D) \).

Corollary 2. Given \(h \in L^2(D) \) and \(\epsilon > 0 \), one can find \(q \in L^2(D) \) such that
\[
\| h(x) - q(x) u(x, \alpha) \|_{L^2(D)} < \epsilon.
\]

Since the scattering amplitude
\[
A(\beta) = -\frac{1}{4\pi} \int_D e^{-ik\beta \cdot x} h(x) dx
\]
depends continuously on \(h \), the inverse problem IP is solved by Claims 1,2.
Proof of Claim 1

Assume the contrary. Then $\exists \psi \in L^2(S^2)$ such that

$$0 = \int_{S^2} d\beta \psi(\beta) \int_D e^{-ik\beta \cdot x} h(x) dx \quad \forall h \in L^2(D).$$

Thus,

$$\int_{S^2} d\beta \psi(\beta) e^{-ik\beta \cdot x} = 0 \quad \forall x \in \mathbb{R}^3.$$

Therefore,

$$\int_0^\infty d\lambda \lambda^2 \int_{S^2} d\beta e^{-i\lambda \beta \cdot x} \psi(\beta) \frac{\delta(\lambda - k)}{k^2} = 0 \quad \forall x \in \mathbb{R}^3.$$

By the injectivity of the Fourier transform, one gets

$$\psi(\beta) \frac{\delta(\lambda - k)}{k^2} = 0.$$

Therefore, $\psi(\beta) = 0$. Claim 1 is proved.
Proof of Claim 2

Given $h \in L^2(D)$, define

$$
u := u_0 - \int_D g(x, y)h(y)dy, \quad g := \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad (3)$$

$$
q(x) := \frac{h(x)}{u(x)}. \quad (4)
$$

If $q \in L^2(D)$, then this q solves the problem, and u, defined in (3), is the scattering solution:

$$
u = u_0 - \int_D g(x, y)q(y)u(y)dy, \quad (5)$$

and

$$A(\beta) = -\frac{1}{4\pi} \int_D e^{-ik\beta \cdot y} h(y)dy.$$
If \(q \) is not in \(L^2(D) \), then the null set
\(N := \{ x : x \in D, \, u(x) = 0 \} \) is non-void. Let
\[
N_\delta := \{ x : |u(x)| < \delta, x \in D \}, \quad D_\delta := D \setminus N_\delta.
\]

Claim 3. \(\exists h_\delta = \begin{cases} h, &\text{ in } D_\delta, \\ 0, &\text{ in } N_\delta, \end{cases} \) such that \(\| h_\delta - h \|_{L^2(D)} < c \epsilon \),
\[
q_\delta := \begin{cases} \frac{h_\delta}{u_\delta}, &\text{ in } D_\delta, \\ 0, &\text{ in } N_\delta, \end{cases} \quad q_\delta \in L^\infty(D), \quad u_\delta := u_0 - \int_D g h_\delta dy.
\]

Proof of Claim 3. The set \(N \) is, generically, a line
\(l = \{ x : u_1(x) = 0, \, u_2(x) = 0 \} \), where \(u_1 = \Re u \) and \(u_2 = \Im u \).

Consider a tubular neighborhood of this line, \(\rho(x, l) \leq \delta \). Let the origin \(O \) be chosen on \(l \), \(s_3 \) be the Cartesian coordinate along the tangent to \(l \), and \(s_1 = u_1 \), \(s_2 = u_2 \) are coordinates in the plane orthogonal to \(l \), \(s_j \)-axis is directed along \(\nabla u_j \big|_l \), \(j = 1, 2 \).
The Jacobian \mathcal{J} of the transformation $(x_1, x_2, x_3) \mapsto (s_1, s_2, s_3)$ is nonsingular, $|\mathcal{J}| + |\mathcal{J}^{-1}| \leq c$, because ∇u_1 and ∇u_2 are linearly independent. Define

$$
\begin{align*}
 h_\delta &:= \begin{cases}
 h, & \text{in } D_\delta, \\
 0, & \text{in } N_\delta,
 \end{cases} \\
 u_\delta &:= u_0 - \int_D g(x, y)h_\delta(y)dy,
\end{align*}
$$

$$
\begin{align*}
 q_\delta &:= \begin{cases}
 \frac{h_\delta}{u_\delta}, & \text{in } D_\delta, \\
 0, & \text{in } N_\delta.
 \end{cases}
\end{align*}
$$

One has $u_\delta = u_0 - \int_D ghdy + \int_D g(x, y)(h - h_\delta)dy$,

$$
|u_\delta(x)| \geq |u(x)| - c \int_{N_\delta} \frac{dy}{4\pi|x - y|} \geq \delta - I(\delta), \quad x \in D_\delta, \quad c = \max_{x \in N_\delta} |h(x)|.
$$

If one proves, that $I(\delta) = o(\delta)$, $\delta \to 0$, $\forall x \in D_\delta$ then $q_\delta \in L^\infty(D)$, and Claim 3 is proved.
Claim 4:

\[I(\delta) = \mathcal{O}(\delta^2 |\ln(\delta)|), \quad \delta \to 0. \]

Proof of Claim 4.

\[
\int_{N_\delta} \frac{dy}{|x - y|} \leq \int_{N_\delta} \frac{dy}{|y|} = c_1 \int_0^{c_2 \delta} \rho \int_0^1 \frac{ds_3}{\sqrt{\rho^2 + s_3^2}} d\rho \\
= c_1 \int_0^{c_2 \delta} d\rho \rho \ln(s_3 + \sqrt{\rho^2 + s_3^2})\bigg|_0^1 \leq c_3 \int_0^{c_2 \delta} \rho \ln \left(\frac{1}{\rho}\right) d\rho \\
\leq \mathcal{O}(\delta^2 |\ln(\delta)|).
\]
The condition $|\nabla u_j|_l \geq c > 0, j = 1, 2$, implies that a tubular neighborhood of the line l, $N_\delta = \{x : \sqrt{|u_1|^2 + |u_2|^2} \leq \delta\}$, is included in a region $\{x : |x| \leq c_2 \delta\}$ and includes a region $\{x : |x| \leq c'_2 \delta\}$. This follows from the estimates

$$c'_2 \rho \leq |u(x)| = |\nabla u(\xi) \cdot (x - \xi)| \leq c_2 \rho.$$

Here $\xi \in l$, x is a point on a plane passing through ξ and orthogonal to l, $\rho = |x - \xi|$, and $\delta > 0$ is sufficiently small, so that the terms of order ρ^2 are negligible, $c_2 = \max_{\xi \in l} |\nabla u(\xi)|$, $c'_2 = \min_{\xi \in l} |\nabla u(\xi)|$. Claim 4, and, therefore, Claim 2 are proved.
Calculation of h given $f(\beta)$ and $\epsilon > 0$

1. Let $\{\phi_j\}$ be a basis in $L^2(D)$,

$$h_n = \sum_{j=1}^{n} c^{(n)}_j \phi_j,$$

$$\psi_j(\beta) := -\frac{1}{4\pi} \int_D e^{-ik\beta \cdot x} \phi_j(x) \, dx.$$

Consider the problem:

$$\|f(\beta) - \sum_{j=1}^{n} c^{(n)}_j \psi_j(\beta)\| = \min.$$ \hfill (6)

A necessary condition for (6) is a linear system for $c^{(n)}_j$.
An analytical solution.

2. Let

\[D = \{ x : |x| \leq 1 \} := B, \text{ or } B \subset D, \text{ } h = 0 \text{ in } D \setminus B. \]

One has:

\[
h_{lm} = \begin{cases}
(-1)^{l+1} \frac{f_{l,m}}{\sqrt{\frac{\pi}{2k} g_{1,l+\frac{1}{2}}(k)}}, & l \leq L, \\
0, & l > L,
\end{cases}
\]

where \(g_{\mu,\nu}(k) = \int_{0}^{1} x^{\mu + \frac{1}{2}} J_{\nu}(kx) dx \) (Bateman-Erdelyi book, formula (8.5.8))

and \(L \) is chosen so that

\[
\sum_{l>L} |f_{l,m}|^2 < \epsilon^2.
\]
References I

References II

References III

References IV

Open access Journal: http://www.mdpi.com/journal/mathematics

References V
