SYMMETRY PROBLEM

A. G. RAMM

(Communicated by Matthew J. Gursky)

Abstract. A novel approach to an old symmetry problem is developed. A new proof is given for the following symmetry problem, studied earlier: if \(\Delta u = 1 \) in \(D \subset \mathbb{R}^3 \), \(u = 0 \) on \(S \), the boundary of \(D \), and \(u_N = \text{const} \) on \(S \), then \(S \) is a sphere. It is assumed that \(S \) is a Lipschitz surface homeomorphic to a sphere. This result has been proved in different ways by various authors. Our proof is based on a simple new idea.

1. Introduction

Symmetry problems are of interest both theoretically and in applications. A well-known, and still unsolved, symmetry problem is the Pompeiu problem (see [9], [10], and the references therein). In modern formulation this problem consists of proving the following conjecture:

If \(D \subset \mathbb{R}^n, n \geq 2, \) is a domain homeomorphic to a ball, and the boundary \(S \) of \(D \) is smooth (\(S \in C^{1,\lambda}, \lambda > 0, \) is sufficient), and if the problem

\[
(\nabla^2 + k^2)u = 0 \quad \text{in} \quad D, \quad u|_S = c \neq 0, \quad u_N|_S = 0, \quad k^2 = \text{const} > 0,
\]

where \(c \) is a constant, has a solution, then \(S \) is a sphere.

A similar problem (Schiffer’s conjecture) is also unsolved (see also [4]):

If the problem

\[
(\nabla^2 + k^2)u = 0 \quad \text{in} \quad D, \quad u|_S = 0, \quad u_N|_S = c \neq 0, \quad k^2 = \text{const} > 0
\]

has a solution, then \(S \) is a sphere.

Standing assumptions. In this paper we assume that \(D \subset \mathbb{R}^3 \) is a bounded domain homeomorphic to a ball, with a sufficiently smooth boundary \(S \) (\(S \) is Lipschitz suffices).

We use the following notation: \(D' = \mathbb{R}^3 \setminus D \), \(B_R = \{ x : |x| \leq R \} \), \(B_R \supset D, \mathcal{H} \) is the set of all harmonic functions in \(B_R \), \(R > 0 \) is an arbitrary large number, such that the ball \(B_R \) contains \(D \), \(|D| \) and \(|S| \) are the volume of \(D \) and the surface area of \(S \), respectively.

In [12] it is proved that if

\[
\int_D \frac{dy}{4\pi|x - y|} = \frac{c}{|x|}, \quad \forall x \in B'_R, \quad c = \text{const} > 0,
\]

then \(D \) is a ball. The proof in [12] is based on an idea similar to the one we are using in this paper.

Received by the editors December 6, 2010 and, in revised form, June 25, 2011.

2010 Mathematics Subject Classification. Primary 35J05, 31B20.

Key words and phrases. Symmetry problems, potential theory.
In [13] a symmetry problem of interest in elasticity theory is studied by A.D. Alexandrov’s method of a moving plane ([1]), used also in [14]. The result in [14], which is formulated below in Theorem 1, was proved in [15] by a method, different from the one given in [14], and discussed also in [2]. The argument in [2] remained unclear to the author.

In [5] another symmetry problem of potential theory was studied.

Our goal is to give a new proof of Theorem 1. The result of Theorem 1 was obtained in [14] for \(R^n, n \geq 2 \).

Theorem 1. If \(D \supset R^3 \) is a bounded domain, homeomorphic to a ball, \(S \) is its Lipschitz boundary, and the problem

\[
\Delta u = 1 \quad \text{in} \ D, \quad u \big|_S = 0, \quad u_N \big|_S = c := \frac{|D|}{|S|} > 0
\]

has a solution, then \(S \) is a sphere.

This result is equivalent to the following result:

If

\[
\int_D h(x)dx = c \int_S h(s)ds, \quad \forall h \in \mathcal{H}, \quad c := \frac{|D|}{|S|},
\]

then \(S \) is a sphere.

The equivalence of (4) and (5) can be proved as follows.

Suppose (4) holds. Multiply (4) by an arbitrary \(h \in \mathcal{H} \), integrate by parts and get

\[
\int_D h(x)dx = c \int_S h(s)ds.
\]

If \(h = 1 \) in (6), then one gets \(c = \frac{|D|}{|S|} \), so (3) is identical to (5).

Suppose (5) holds. Then (3) holds. Let \(v \) solve the problem \(\Delta v = 1 \) in \(D \), \(v \big|_S = 0 \). This \(v \) exists and is unique. Using (3), the equation \(\Delta h = 0 \) in \(D \), and the Green’s formula, one gets

\[
c \int_S h(s)ds = \int_D h(x)dx = \int_D h(x)\Delta vdx = \int_S h(s)v_N ds.
\]

Thus,

\[
\int_S h(s)[v_N - c]ds = 0, \quad \forall h \in \mathcal{H}.
\]

We will need the following lemma:

Lemma A. The set of restrictions on \(S \) of all harmonic functions in \(D \) is dense in \(L^2(S) \).

Proof of Lemma A. We give a proof for the convenience of the reader. The proof is borrowed from [12]. Suppose that \(g \in L^2(S) \), and \(\int_S g(s)h(s)ds = 0 \) \(\forall h \in \mathcal{H} \). Since \((4\pi|x-y|)^{-1}\) is in \(\mathcal{H} \) if \(y \in D' \), one gets

\[
w(y) := \int_S g(s)(4\pi|s-y|)^{-1}ds = 0 \quad \forall y \in D'.
\]
Thus, a single layer potential \(w \), with \(L^2 \) density \(g \), vanishes in \(D' \), and, by continuity, on \(S \). Since \(w \) is a harmonic function in \(D \) vanishing on \(S \), it follows that \(w = 0 \) in \(D \). By the jump formula for the normal derivative of the single-layer potential across a Lipschitz boundary, one gets \(g = 0 \).

Thus, (3) implies \(u_N \big|_S = c \). Therefore, (4) holds.

A result, related to equation (3), was studied in [7] for a two-dimensional problem. The arguments in [7] were not quite clear to the author.

Our main result is a new proof of Theorem 1. The proof is simple, and the method of the proof is new. This method can be used in other problems (see [5], [10], [12], [11]).

2. Proofs

Proof of Theorem 1. We denote by \(D' \) the complement of \(D \) in \(\mathbb{R}^3 \), by \(S^2 \) the unit sphere, by \([a,b] \) the cross product of two vectors, by \(g = g(\phi) \) the rotation about an axis, directed along a vector \(\alpha \in S^2 \), by the angle \(\phi \), and note that if \(h(x) \) is a harmonic function in any ball \(B_{R'} \), containing \(D \), then \(h(g(x)) \) is also a harmonic function in \(B_{R'} \).

Take \(h = h(g(\phi)x) \) in (3), differentiate with respect to \(\phi \) and then set \(\phi = 0 \). This yields:

\[
\int_D \nabla h(x) \cdot [\alpha, x] \, dx = c \int_S \nabla h(s) \cdot [\alpha, s] \, ds.
\]

Using the divergence theorem, one rewrites this as

\[
\alpha \cdot \int_S [s, N] h(s) \, ds = \alpha \cdot \int_S [s, c \nabla h(s)] \, ds.
\]

Since \(\alpha \in S^2 \) is arbitrary, one gets

\[
(9) \quad \int_S [s, N] h(s) \, ds = \int_S [s, c \nabla h(s)] \, ds, \quad \forall h \in \mathcal{H},
\]

where \(N = N_s \) is a unit normal to \(S \) at the point \(s \in S \), pointing into \(D' \).

Let \(y \in B_{R'}^c \) be an arbitrary point, and \(h(x) = \frac{1}{|x-y|} \in \mathcal{H} \), where \(x \in B_R \). Then equation (9) implies that

\[
(10) \quad v(y) := \int_S [s, N] \, ds \bigg/ |s-y| = c \int_S \, ds \bigg/ |s-y|, \quad \forall y \in B_{R'}^c,
\]

because

\[
(11) \quad c \int_S [s, \nabla_s \frac{1}{|s-y|}] \, ds = c \int_S [\frac{s}{|s-y|^3}, y] \, ds = c \big[\nabla_y \int_S \frac{ds}{|s-y|} \big],
\]

Relation (11) actually holds for all \(y \in D' \), because of the analyticity of its left and right sides in \(D' \). Let

\[
w(y) := \int_S |s-y|^{-1} \, ds.
\]

Denote \(y^0 := y/|y| \). It is known (see, e.g., [3]) that

\[
(12) \quad |y-s|^{-1} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{4\pi}{2n+1} Y_{nm}(y^0) \overline{Y_{nm}(s^0)} |s|^{n} |y|^{-(n+1)}, \quad |y| > |s|,
\]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
where the overline stands for the complex conjugate, \(y^0 \) is the unit vector characterized by the angles \(\theta, \phi \) in spherical coordinates, \(Y_{nm} \) are normalized spherical harmonics:

\[
Y_{nm}(y^0) = Y_{nm}(\theta, \phi) = \gamma_{nm} P_{n|m|}(\cos \theta)e^{i\phi}, \quad -n \leq m \leq n,
\]

\[
\gamma_{nm} = \left(\frac{(2n+1)(n-m)!}{4\pi(n+m)!} \right)^{1/2}
\]

are normalizing constants:

\[
(Y_{nm}(y^0), Y_{pq}(y^0))_{L^2(S^2)} = \delta_{np}\delta_{mq},
\]

and

\[
P_{n|m|}(\cos \theta) = (\sin \theta)^{|m|} (\frac{d}{d\cos \theta})^{|m|} P_n(\cos \theta)
\]

are the associated Legendre functions, where \(P_n(\cos \theta) \) are the Legendre polynomials.

If \(z = \cos \theta \), then

\[
P_{n,m}(z) = (z^2 - 1)^{m/2}(\frac{d}{dz})^m P_n(z), \quad m = 1, 2, ..., \]

\[
P_n(z) = (2^n n!)^{-1}(\frac{d}{dz})^n(z^2 - 1)^n, \quad P_0(z) = 1
\]

(see [3]). The definitions of \(P_{n,m}(z) \) in various books can differ by a factor \((-1)^m\).

Using formula (12), one obtains

\[
w(y) = \sum_{n=0}^{\infty} \frac{4\pi}{2n+1} \sum_{m=-n}^{n} Y_{nm}(y^0)|y|^{-(n+1)} c_{nm}, \quad c_{nm} := \int_S |s|^n Y_{nm}(s^0) ds.
\]

Substitute this in (10), equate the terms in front of \(|y|^{-(n+1)} \), and define vectors

\[
a_{nm} := \int_S [s,N]|s|^n Y_{nm}(s^0) ds
\]

to obtain

\[
\sum_{m=-n}^{n} Y_{nm}(y^0)a_{nm} = \sum_{m=-n}^{n} c_{nm} [e_\theta e_\phi Y_{nm}(y^0) + e_\phi (\sin \theta)^{-1}\partial_\phi Y_{nm}(y^0), e_r],
\]

where \(e_\theta, e_\phi, \) and \(e_r \) are orthogonal unit vectors of the spherical coordinate system, \([e_\phi, e_r] \) is the cross product, \([e_\phi, e_r] = e_\theta, [e_\theta, e_r] = -e_\phi, y = ry^0, r = |y|, y^0 = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \), \(\partial_\theta = \frac{\partial}{\partial \theta} \).

Therefore, formula (15) can be rewritten as

\[
\sum_{m=-n}^{n} Y_{nm}(y^0)a_{nm} = \sum_{m=-n}^{n} c_{nm} \left(-e_\phi \partial_\theta Y_{nm}(y^0) + \partial_\phi Y_{nm}(y^0) \right).
\]

From (16) we want to derive that

\[
a_{nm} = 0, \quad n \geq 0, -n \leq m \leq n.
\]

If (17) is established, then it follows from (14) and from the completeness in \(L^2(S) \) of the system \(\{ |s|^n Y_{nm}(s^0) \}_{n \geq 0, -n \leq m \leq n} \) that \([s,N] = 0 \) on \(S \), and this implies that \(S \) is a sphere, as follows from Lemma 1 formulated and proved below. Consequently, Theorem 1 is proved as soon as relations (17) are established. The completeness of the system \(\{ |s|^n Y_{nm}(s^0) \}_{n \geq 0, -n \leq m \leq n} \) in \(L^2(S) \) follows from Lemma B:

The functions \(|x|^n Y_{nm}(x^0), n \geq 0, -n \leq m \leq n \), are harmonic in any ball, centered at the origin.
SYMMETRY PROBLEM 519

Lemma B. The set of restrictions of the above functions to any Lipschitz surface homeomorphic to a sphere is complete in $L^2(S)$.

Proof of Lemma B. The proof is given for completeness. It is similar to the proof of Lemma A. Suppose that $g \in L^2(S)$ and

$$\int_S g(s)|s|^nY_{nm}(s^0)ds = 0, \quad \forall n \geq 0, |m| \leq n.$$

This and (12) imply that

$$\int_S g(s)(4\pi|s-y|)^{-1}ds = 0 \quad \forall y \in D',$$

and the argument, given in the proof of Lemma A, yields the desired conclusion $g = 0$. □

Vector a_{nm} is written in the Cartesian basis $\{e_j\}_{1 \leq j \leq 3}$ as

$$a_{nm} = \sum_{j=1}^3 a_{nm,j}e_j.$$

The relation between the components F_1, F_2, F_3 of a vector F in Cartesian coordinates and its components F_r, F_θ, F_ϕ in spherical coordinates can be found, e.g., in [6], Section 6.5:

$$F_1 = F_r \sin \theta \cos \phi + F_\theta \cos \theta \cos \phi - F_\phi \sin \phi,$$

$$F_2 = F_r \sin \theta \sin \phi + F_\theta \cos \theta \sin \phi + F_\phi \cos \phi,$$

$$F_3 = F_r \cos \theta - F_\theta \sin \theta.$$

Using these relations one derives from (16) the following formulas:

(18) $$\sum_{m=-n}^n a_{nm,1}Y_{nm}(y^0) = \sum_{m=-n}^n cc_{nm} \left(\partial_\phi Y_{nm}(y^0) \sin \phi + \partial_\theta Y_{nm}(y^0) \cot \theta \cos \phi \right),$$

(19) $$\sum_{m=-n}^n a_{nm,2}Y_{nm}(y^0) = \sum_{m=-n}^n cc_{nm} \left(-\partial_\theta Y_{nm}(y^0) \cos \phi + \partial_\phi Y_{nm}(y^0) \cot \theta \sin \phi \right),$$

(20) $$\sum_{m=-n}^n a_{nm,3}Y_{nm}(y^0) = - \sum_{m=-n}^n cc_{nm} \partial_\phi Y_{nm}(y^0).$$

From formulas (18)-(20) one derives (17).

If $n = 0$, then $a_{00} = 0$, as the following calculation shows:

$$a_{00} = \frac{1}{(4\pi)^{1/2}} \int_S [s, N]ds = -\frac{1}{(4\pi)^{1/2}} \int_D [
abla, x]dx = 0.$$

If $n > 0$, then multiply equation (20) by $e^{-im\phi}$, integrate with respect to ϕ over $[0, 2\pi]$, write $P_{n,m}$ for $P_{n,m}(\cos \theta)$, and obtain

(21) $$a_{nm,3}P_{n,m} = -cc_{nm}imP_{n,m}, \quad c_{nm} := c_{nm}.$$

One concludes that $a_{n0,3} = 0$ and $a_{nm,3} = -imcc_{nm,m}$. If one derives from (18)-(19) that $c_{n,m} = 0$, then equation (17) follows, and Theorem 1 is proved.
The quantities \(a_{nm} \) of their asymptotics as in independence of the system of functions and Theorem 1 is proved.

From (18) and (19) one derives analogs of (21):

\[
2ia_{nm,1}\gamma_{nm} P_{n,m} = cc_{n,m-1}\gamma_{n,m-1} (\partial_{\theta} P_{n,m-1} - (m - 1) \cot \theta P_{n,m-1})
\]

\[
2ia_{nm,2}\gamma_{nm} P_{n,m} = cc_{n,m-1}\gamma_{n,m-1} (-\partial_{\theta} P_{n,m-1} + (m - 1) \cot \theta P_{n,m-1})
\]

Let us take \(\theta \to 0 \) in the above equations. It is known (see [3], Section 3.9.2, formula (4)) that

\[
P_{n,m}(z) \sim b(n,m)(z - 1)^m/2, \quad z \to 1, \quad b(n,m) := \frac{(n + m)!}{2^m/m!(n - m)!}.
\]

Equation (22) can be considered as a linear combination

\[
\sum_{j=1}^3 A_j f_j(z) = 0,
\]

where the \(A_j \) are constants:

\[A_1 = 2ia_{nm,1}\gamma_{nm}, \quad A_2 = -cc_{n,m-1}\gamma_{n,m-1}, \quad A_3 = cc_{n,m+1}\gamma_{n,m+1},\]

and

\[f_1(z) = P_{n,m}(z),\]
\[f_2(z) = -(1 - z^2)^{1/2}P_{n,m-1}'(z) - (m - 1) \frac{z}{(1 - z^2)^{1/2}} P_{n,m-1}(z),\]
\[f_3(z) = -(1 - z^2)^{1/2}P_{n,m+1}'(z) - (m + 1) \frac{z}{(1 - z^2)^{1/2}} P_{n,m+1}(z), \quad z = \cos \theta.
\]

If the system of functions \(\{ f_j(z) \}^3_{j=1} \) is linearly independent on the interval \([-1, 1]\), then all \(A_j = 0 \) in (25), that is, \(A_1 = 0, A_2 = 0, \) and \(A_3 = 0. \) This implies that

\[a_{nm,1} = c_{n,m}, \quad -n \leq m \leq n.
\]

The quantities \(a_{nm,2} \) and \(a_{nm,3} \) are proportional to \(c_{n,m}. \) Since \(c_{n,m} = 0, \) it follows that

\[a_{nm,2} = a_{nm,3} = 0, \quad -n \leq m \leq n,
\]

and Theorem 1 is proved.

Thus, to complete the proof of Theorem 1 it is sufficient to verify the linear independence of the system of functions \(\{ f_j(z) \}^3_{j=1} \) on the interval \([-1, 1].\)

From formula (24) it follows that these functions have the following main terms of their asymptotics as \(z \to 1:\)

\[f_1(z) \sim B_1(z - 1)^m/2, \quad f_2(z) \sim B_2 \frac{(z - 1)^{(m+1)/2}}{(1 - z^2)^{1/2}}, \quad f_3(z) \sim B_3 \frac{(z - 1)^{(m+3)/2}}{(1 - z^2)^{1/2}}.
\]

where the constants \(B_j \neq 0, 1 \leq j \leq 3, \) depend on \(n, m. \) The linear independence of the system \(\{ f_j(z) \}^3_{j=1} \) holds because the system

\[\{(z - 1)^m/2, \quad \frac{(z - 1)^{(m+1)/2}}{(1 - z^2)^{1/2}}, \quad \frac{(z - 1)^{(m+3)/2}}{(1 - z^2)^{1/2}}\}
\]

is linearly independent. The linear independence of this system holds if the system

\[\{1, \quad (1 + z)^{-0.5}, \quad (z - 1)(1 + z)^{-0.5}\}
\]
is linearly independent on the interval \([-1, 1]\). The linear independence of this system on the interval \([-1, 1]\) is obvious.

Theorem 1 is proved. \[\square\]

Lemma 1. If \(S\) is a \(C^2\) smooth closed surface and \([s, N_s] = 0\) on \(S\), then \(S\) is a sphere.

Proof of Lemma 1. Let \(s = r(u, v)\) be a parametric equation of \(S\). Then the vectors \(r_u\) and \(r_v\) are linearly independent and \(N_s\) is directed along the vector \([r_u, r_v]\). Thus, the assumption \([s, N_s] = 0\) on \(S\) implies that

\[[r, [r_u, r_v]] = r_u(r, r_v) - r_v(r, r_u) = 0. \]

Since the vectors \(r_u\) and \(r_v\) are linearly independent, it follows that \((r, r_v) = (r, r_u) = 0\). Thus, \((r, r) = R^2\), where \(R^2\) is a constant. This means that \(S\) is a sphere. Lemma 1 is proved. \[\square\]

References

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602

E-mail address: ramm@math.ksu.edu