The point value of each problem is given in the margin. Standard notation is used:

- $(a, b) = \text{GCD}$,
- $[a, b] = \text{LCM}$,
- $p^k | n$ if $p^k | n$ but $p^{k+1} \nmid n$.
- $d(n) = \text{the number of positive divisors of } n$.
- $\sigma(n) = \text{the sum of the positive divisors on } n$.
- $\phi(n) = \text{the number of integers relatively prime to } n \text{ from } 1 \text{ to } n$.
- $\mu(n) = 1$ if $n = 1$, 0 if $p^2 | n$, and $(-1)^k$ if $n = p_1 \ldots p_k$.

1. Let $a = 2^5 5^8 7^2$, $b = 2^9 3^5 5^7$. Find the following.
 (i) $(a, b) =$ The prime factorization will do!
 (ii) $[a, b] =$ Same comment.
 (iii) The value e such that $2^e | b^2 a$
 (iv) The value f such that $5^f | (b - a)$.

2. Use the Sieve of Eratosthenes to find all the primes between 180 and 200.
 What is the largest prime divisor that must be sifted out?

<table>
<thead>
<tr>
<th>180</th>
<th>181</th>
<th>182</th>
<th>183</th>
<th>184</th>
<th>185</th>
<th>186</th>
<th>187</th>
<th>188</th>
<th>189</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
</tr>
</tbody>
</table>

 Primes:

3. (a) If $2^k + 1$ is a prime, what can be said about k?
 (b) Find a nontrivial factor of $10^9 + 1$. (It doesn’t have to be a prime.)
 (c) Give a prime divisor of $2^{45} - 1$. (One will do.)
4. Find the following.
 (a) The prime power factorization of 270.
 (b) \(d(270) = \)
 (c) \(\sigma(270) = \)
 (d) \(\phi(270) = \)
 (e) Is 270 abundant, deficient or perfect?

5. Suppose that \(f \) is a multiplicative function defined on \(N \) such that \(f(2) = 3, f(3) = 5, f(5) = 10 \) and \(f(p^2) = 0 \) for any prime \(p \). For each of the following find the value or state that it cannot be determined based on the given information.
 (a) \(f(30) = \)
 (b) \(f(50) = \)
 (c) \(f(27) = \)
(12) 6. Give a proof that there are infinitely many primes.

(10) 7. Let \(n = 2^k(2^{k+1} - 1) \), where \(k \) is a positive integer and \(2^{k+1} - 1 \) is a prime. Prove that \(n \) is a perfect number, that is, \(\sigma(n) = 2n \).

(10) 8. Let \(F(n) = \sum_{d\mid n} d\mu(d) \).

 (a) Show that the function \(f(n) = n\mu(n) \) is multiplicative. (You may assume \(\mu \) is multiplicative.)

 (b) Find \(F(p^k) \) for any prime power \(p^k \).

 (c) Find \(F(3000) = \)