Let \mathbb{D} denote the unit disk $\{z : |z| < 1\}$ and $H(\mathbb{D})$ the set of analytic functions on \mathbb{D}. A one-parameter semigroup $\{\varphi_t\}_{t \geq 0}$ of analytic functions on \mathbb{D} is a family of analytic functions $\varphi_t : \mathbb{D} \to \mathbb{D}$ that satisfies the following three conditions:
Let \mathbb{D} denote the unit disk $\{z : |z| < 1\}$ and $H(\mathbb{D})$ the set of analytic functions on \mathbb{D}. A one-parameter semigroup $\{\varphi_t\}_{t \geq 0}$ of analytic functions on \mathbb{D} is a family of analytic functions $\varphi_t : \mathbb{D} \to \mathbb{D}$ that satisfies the following three conditions:

(SG1) φ_0 is the identity, i.e. $\varphi_0(z) = z$, $z \in \mathbb{D}$;
Let \mathbb{D} denote the unit disk \(\{z : |z| < 1\} \) and $H(\mathbb{D})$ the set of analytic functions on \mathbb{D}. A one-parameter semigroup \(\{\varphi_t\}_{t \geq 0} \) of analytic functions on \mathbb{D} is a family of analytic functions $\varphi_t : \mathbb{D} \to \mathbb{D}$ that satisfies the following three conditions:

\begin{enumerate}
 \item [(SG1)] φ_0 is the identity, i.e. $\varphi_0(z) = z$, $z \in \mathbb{D}$;
 \item [(SG2)] $\varphi_{s+t} = \varphi_s \circ \varphi_t$, for all $t, s \geq 0$;
\end{enumerate}
Let \(\mathbb{D} \) denote the unit disk \(\{z : |z| < 1\} \) and \(H(\mathbb{D}) \) the set of analytic functions on \(\mathbb{D} \). A one-parameter semigroup \(\{\varphi_t\}_{t \geq 0} \) of analytic functions on \(\mathbb{D} \) is a family of analytic functions \(\varphi_t : \mathbb{D} \to \mathbb{D} \) that satisfies the following three conditions:

SG1 \(\varphi_0 \) is the identity, i.e. \(\varphi_0(z) = z, \ z \in \mathbb{D} \);

SG2 \(\varphi_{s+t} = \varphi_s \circ \varphi_t \), for all \(t, s \geq 0 \);

SG3 the mapping \((t, z) \to \varphi_t(z) \) is continuous on \([0, \infty) \times \mathbb{D} \).
Let \mathbb{D} denote the unit disk $\{z : |z| < 1\}$ and $H(\mathbb{D})$ the set of analytic functions on \mathbb{D}. A one-parameter semigroup $\{\varphi_t\}_{t \geq 0}$ of analytic functions on \mathbb{D} is a family of analytic functions $\varphi_t : \mathbb{D} \to \mathbb{D}$ that satisfies the following three conditions:

(SG1) φ_0 is the identity, i.e. $\varphi_0(z) = z$, $z \in \mathbb{D}$;

(SG2) $\varphi_{s+t} = \varphi_s \circ \varphi_t$, for all $t, s \geq 0$;

(SG3) the mapping $(t, z) \to \varphi_t(z)$ is continuous on $[0, \infty) \times \mathbb{D}$.

The trivial case is that $\varphi_t(z) = z$ for all $t \geq 0$. Otherwise, we say that $\{\varphi_t\}$ is nontrivial.
Examples of semigroups of analytic functions

\[\phi_t(z) = e^{-ct}z, \text{ where } \Re c \geq 0. \]

Rotation and Shrinking, common fixed point at 0:

\[\phi_t(z) = 1 + e^{-t}(z - 1). \]

Shrinking disks all tangent to unit circle at 1, common fixed point 1:

An unlimited variety of such examples is easily constructed:
Examples of semigroups of analytic functions

\(\varphi_t(z) = e^{-ct}z, \) where \(\text{Re} \ c \geq 0. \)
Examples of semigroups of analytic functions

\[\varphi_t(z) = e^{-ct}z, \text{ where } \Re c \geq 0. \] Rotation and Shrinking, common fixed point point 0
Examples of semigroups of analytic functions

\[\varphi_t(z) = e^{-ct} z, \text{ where } \Re c \geq 0. \] Rotation and Shrinking, common fixed point 0
Examples of semigroups of analytic functions

\(\varphi_t(z) = e^{-ct}z, \) where \(\Re c \geq 0. \) Rotation and Shrinking, common fixed point point 0

\[\varphi_t(z) = 1 + e^{-t}(z - 1). \]
Examples of semigroups of analytic functions

\(\varphi_t(z) = e^{-ct}z \), where \(\Re c \geq 0 \). Rotation and Shrinking, common fixed point point 0

\(\varphi_t(z) = 1 + e^{-t}(z - 1) \). Shrinking disks all tangent to unit circle at 1, common fixed point 1:
Examples of semigroups of analytic functions

\[\varphi_t(z) = e^{-ct}z, \text{ where } \Re c \geq 0. \] Rotation and Shrinking, common fixed point 0

\[\varphi_t(z) = 1 + e^{-t}(z - 1). \] Shrinking disks all tangent to unit circle at 1, common fixed point 1:
Examples of semigroups of analytic functions

\(\varphi_t(z) = e^{-ct}z \), where \(\text{Re } c \geq 0 \). Rotation and Shrinking, common fixed point 0

\[\begin{align*}
&
\begin{array}{c}
\varphi_t(z) = 1 + e^{-t}(z - 1).
\end{array}
\end{align*} \]

Shrinking disks all tangent to unit circle at 1, common fixed point 1:

An unlimited variety of such examples is easily constructed:
Ω spiral-like:

$\exists c, R, c > 0$ s.t.

$\{w = c t; t \geq 0\} \subset \Omega$

for each $w \in \Omega$.
\[\exists c \in C \text{ s.t.} \]
\[\{ w + ct : t > 0 \} \subset \Omega \]
for each \(\omega \)
Every nontrivial semigroup of analytic functions $\{\varphi_t\}_{t \geq 0}$ has a unique common fixed point b with $|\varphi'_t(b)| \leq 1$ for all $t \geq 0$, called the Denjoy-Wolff point of the semigroup. Under a normalization, the Denjoy-Wolff point b may be assumed to be 0 or 1. If $b = 0$, then $\varphi_t(z) = h^{-1}(e^{-ct}h(z))$, where h is a univalent function from D onto a spirallike domain Ω, $h(0) = 0$, $\Re c \geq 0$, and $w - ct \in \Omega$ for each $w \in \Omega$, $t \geq 0$. If $b = 1$, then $\varphi_t(z) = h^{-1}(h(z) + ct)$, where $h : D \to \Omega$ is a Riemann map, Ω is close-to-convex, $h(0) = 0$, $\Re c \geq 0$, and $w + ct \in \Omega$ for each $w \in \Omega$, $t \geq 0$.
Every nontrivial semigroup of analytic functions \(\{ \varphi_t \}_{t \geq 0} \) has a unique common fixed point \(b \) with \(|\varphi'_t(b)| \leq 1 \) for all \(t \geq 0 \), called the Denjoy-Wolff point of the semigroup.
Every nontrivial semigroup of analytic functions \(\{ \varphi_t \}_{t \geq 0} \) has a unique common fixed point \(b \) with \(|\varphi'_t(b)| \leq 1 \) for all \(t \geq 0 \), called the Denjoy-Wolff point of the semigroup.

Under a normalization, the Denjoy-Wolff point \(b \) may be assumed to be 0 or 1.
Every nontrivial semigroup of analytic functions \(\{\varphi_t\}_{t \geq 0} \) has a unique common fixed point \(b \) with \(|\varphi'_t(b)| \leq 1 \) for all \(t \geq 0 \), called the Denjoy-Wolff point of the semigroup.

Under a normalization, the Denjoy-Wolff point \(b \) may be assumed to be 0 or 1.

If \(b = 0 \), then

\[
\varphi_t(z) = h^{-1}(e^{-ct} h(z)),
\]

where \(h \) is a univalent function from \(\mathbb{D} \) onto a spirallike domain \(\Omega \), \(h(0) = 0 \), \(\Re c \geq 0 \), and \(we^{-ct} \in \Omega \) for each \(w \in \Omega, t \geq 0 \).
Every nontrivial semigroup of analytic functions \(\{ \varphi_t \}_{t \geq 0} \) has a unique common fixed point \(b \) with \(|\varphi'_t(b)| \leq 1 \) for all \(t \geq 0 \), called the Denjoy-Wolff point of the semigroup.

Under a normalization, the Denjoy-Wolff point \(b \) may be assumed to be 0 or 1.

If \(b = 0 \), then
\[
\varphi_t(z) = h^{-1}(e^{-ct}h(z)),
\]
where \(h \) is a univalent function from \(\mathbb{D} \) onto a spirallike domain \(\Omega \), \(h(0) = 0 \), \(\Re c \geq 0 \), and \(we^{-ct} \in \Omega \) for each \(w \in \Omega \), \(t \geq 0 \).

If \(b = 1 \), then
\[
\varphi_t(z) = h^{-1}(h(z) + ct),
\]
where \(h : \mathbb{D} \rightarrow \Omega \) is a Riemann map, \(\Omega \) is close-to-convex, \(h(0) = 0 \), \(\Re c \geq 0 \), and \(w + ct \in \Omega \) for each \(w \in \Omega \), \(t \geq 0 \).
Composition semigroups

Associated with the semigroup $\{\varphi_t\}$ is the composition semigroup of linear operators $\{C_t\}$, where $C_t(f) = f \circ \varphi_t$ for $f \in H(D)$.

If C_t is a bounded operator on some Banach space $X \subset H(D)$ for all $t \geq 0$, we say that the semigroup $\{\varphi_t\}$ acts on X.

If in addition the strong continuity condition $\lim_{t \to 0^+} \|f \circ \varphi_t - f\|_X = 0$ holds for all $f \in X$, then it is said that $\{\varphi_t\}$ is strongly continuous on X.
Associated with the semigroup \(\{ \varphi_t \} \) is the composition semigroup of linear operators \(\{ C_t \} \), where \(C_t(f) = f \circ \varphi_t \) for \(f \in H(\mathbb{D}) \).
Composition semigroups

Associated with the semigroup \(\{ \varphi_t \} \) is the composition semigroup of linear operators \(\{ C_t \} \), where \(C_t(f) = f \circ \varphi_t \) for \(f \in H(\mathbb{D}) \).

If \(C_t \) is a bounded operator on some Banach space \(X \subset H(\mathbb{D}) \) for all \(t \geq 0 \), we say that the semigroup \(\{ \varphi_t \} \) acts on \(X \).
Associated with the semigroup \(\{ \varphi_t \} \) is the composition semigroup of linear operators \(\{ C_t \} \), where \(C_t(f) = f \circ \varphi_t \) for \(f \in H(\mathbb{D}) \).

If \(C_t \) is a bounded operator on some Banach space \(X \subset H(\mathbb{D}) \) for all \(t \geq 0 \), we say that the semigroup \(\{ \varphi_t \} \) acts on \(X \).

If in addition the strong continuity condition

\[
\lim_{t \to 0^+} \| f \circ \varphi_t - f \|_X = 0
\]

holds for all \(f \in X \), then it is said that \(\{ \varphi_t \} \) is strongly continuous on \(X \).
Denote by $\{\varphi_t, X\}$ the maximal closed subspace of X on which $\{C_t\}$ is strongly continuous.

Theorem (O. Blasco, M. Contreras, S. Díaz-Madrigal, J. Martínez, M. Papadimitrakis, and A. Siskakis)

Let $\{\varphi_t\}_{t \geq 0}$ be a semigroup with generator G and X a Banach space of analytic functions which contains the constant functions and such that $\sup_{0 \leq t \leq 1} \|C_t\| < \infty$. Then $\{\varphi_t, X\} = \{f \in X : Gf' \in X\}$.

Here $G(z) = \lim_{t \to 0^+} \varphi_t(z) - z$ is the infinitesimal generator of $\{\varphi_t\}_{t \geq 0}$. This convergence holds uniformly on compact subsets on D so $G \in H(D)$. G has a representation $G(z) = (bz - 1)(z - b)P(z)$, $z \in D$, where b is the Denjoy-Wolff point of $\{\varphi_t\}_{t \geq 0}$, $P \in H(D)$ with $\Re P(z) \geq 0$ for all $z \in D$.

Wayne Smith

Composition Semigroups on BMOA and H^∞
Denote by \(\varphi_t, X \) the maximal closed subspace of \(X \) on which \(\{ C_t \} \) is strongly continuous.
Denote by \([\varphi_t, X]\) the maximal closed subspace of \(X\) on which \(\{C_t\}\) is strongly continuous.

Theorem (O. Blasco, M. Contreras, S. Díaz-Madrigal, J. Martínez, M. Papadimitrakis, and A. Siskakis)

Let \(\{\varphi_t\}_{t \geq 0}\) be a semigroup with generator \(G\) and \(X\) a Banach space of analytic functions which contains the constant functions and such that \(\sup_{0 \leq t \leq 1} \|C_t\| < \infty\). Then

\[[\varphi_t, X] = \{ f \in X : Gf' \in X \}. \]
Denote by \([\varphi_t, X]\) the maximal closed subspace of \(X\) on which \(\{C_t\}\) is strongly continuous.

Theorem (O. Blasco, M. Contreras, S. Díaz-Madrigal, J. Martínez, M. Papadimitrakis, and A. Siskakis)

Let \(\{\varphi_t\}_{t \geq 0}\) be a semigroup with generator \(G\) and \(X\) a Banach space of analytic functions which contains the constant functions and such that \(\sup_{0 \leq t \leq 1} \|C_t\| < \infty\). Then

\[
[\varphi_t, X] = \{f \in X : Gf' \in X\}.
\]

Here \(G(z) = \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t}\) is the infinitesimal generator of \(\{\varphi_t\}_{t \geq 0}\).
Denote by \([\varphi_t, X]\) the maximal closed subspace of \(X\) on which \(\{C_t\}\) is strongly continuous.

Theorem (O. Blasco, M. Contreras, S. Díaz-Madrigal, J. Martínez, M. Papadimitrakis, and A. Siskakis)

Let \(\{\varphi_t\}_{t \geq 0}\) be a semigroup with generator \(G\) and \(X\) a Banach space of analytic functions which contains the constant functions and such that \(\sup_{0 \leq t \leq 1} \|C_t\| < \infty\). Then

\[
[\varphi_t, X] = \{f \in X : Gf' \in X\}.
\]

Here \(G(z) = \lim_{t \to 0^+} \frac{\varphi_t(z) - z}{t}\) is the infinitesimal generator of \(\{\varphi_t\}_{t \geq 0}\). This convergence holds uniformly on compact subsets on \(\mathbb{D}\) so \(G \in H(\mathbb{D})\). \(G\) has a representation

\[
G(z) = (bz - 1)(z - b)P(z), \quad z \in \mathbb{D},
\]

where \(b\) is the Denjoy-Wolff point of \(\{\varphi_t\}_{t \geq 0}\), \(P \in H(\mathbb{D})\) with \(\text{Re} \ P(z) \geq 0\) for all \(z \in \mathbb{D}\).
Some known results:

(i) If $X \in \{H^p \ (1 \leq p < \infty), A^p \ (1 \leq p < \infty), \mathcal{D}, B_0, \text{VMOA}\}$ and $\{\varphi_t\}$ is any semigroup, then $[\varphi_t, X] = X$;
Some known results:

(i) If $X \in \{H^p (1 \leq p < \infty), A^p (1 \leq p < \infty), D, B_0, \text{VMOA}\}$ and $\{\varphi_t\}$ is any semigroup, then $[\varphi_t, X] = X$;

(ii) For every nontrivial semigroup $\{\varphi_t\}$, $[\varphi_t, H^\infty] \subsetneq H^\infty$ and $[\varphi_t, B] \subsetneq B$;
Some known results:

(i) If $X \in \{H^p \mid 1 \leq p < \infty\}, A^p \mid 1 \leq p < \infty\}, D, B_0, \text{VMOA}\}$ and $\{\varphi_t\}$ is any semigroup, then $[\varphi_t, X] = X$;

(ii) For every nontrivial semigroup $\{\varphi_t\}$, $[\varphi_t, H^\infty] \subsetneq H^\infty$ and $[\varphi_t, B] \subsetneq B$;

(iii) For every semigroup $\{\varphi_t\}$, VMOA $\subseteq [\varphi_t, \text{BMOA}]$ and $B_0 \subseteq [\varphi_t, B]$.

(Berkson and Porta; Siskakis; Blasco, Contreras, Díaz-Madrigal, Martínez, and Siskakis)
Some known results:

(i) If $X \in \{ H^p \ (1 \leq p < \infty), A^p \ (1 \leq p < \infty), D, B_0, VMOA \}$ and $\{ \varphi_t \}$ is any semigroup, then $[\varphi_t, X] = X$;

(ii) For every nontrivial semigroup $\{ \varphi_t \}$, $[\varphi_t, H^\infty] \subsetneq H^\infty$ and $[\varphi_t, B] \subsetneq B$;

(iii) For every semigroup $\{ \varphi_t \}$, $VMOA \subseteq [\varphi_t, BMOA]$ and $B_0 \subseteq [\varphi_t, B]$.

(Berkson and Porta; Siskakis; Blasco, Contreras, Díaz-Madrigal, Martínez, and Siskakis)
Statement (ii) can be proved using a functional analytic argument based on H^∞ and the Bloch space having the Dunford-Pettis property.

The space BMOA does not have the Dunford-Pettis property, and the corresponding statement had remained open.

Theorem (Anderson, Jovovic, S)

Suppose $H^\infty \subseteq X \subseteq B$. Then $[\varphi_t, X] \subseteq X$. In particular, $[\varphi_t, \text{BMOA}] \subseteq \text{BMOA}$.
Statement (ii) can be proved using a functional analytic argument based on H^∞ and the Bloch space having the Dunford-Pettis property.

(X has the D-P property if every weakly compact operator $T : X \to Y$ takes weakly compact sets in X to norm-compact sets in Y.)

The space BMOA does not have the Dunford-Pettis property, and the corresponding statement had remained open.

Theorem (Anderson, Jovovic, S)
Suppose $H^\infty \subseteq X \subseteq BMOA$. Then $[\phi_t, X] \subseteq X$. In particular, $[\phi_t, BMOA] \subseteq BMOA$.

Wayne Smith
Composition Semigroups on BMOA and H^∞
Statement (ii) can be proved using a functional analytic argument based on H^∞ and the Bloch space having the Dunford-Pettis property.

(X has the D-P property if every weakly compact operator $T : X \to Y$ takes weakly compact sets in X to norm-compact sets in Y.)

The space BMOA does not have the Dunford-Pettis property, and the corresponding statement had remained open.
Statement (ii) can be proved using a functional analytic argument based on H^∞ and the Bloch space having the Dunford-Pettis property.

(X has the D-P property if every weakly compact operator $T : X \to Y$ takes weakly compact sets in X to norm-compact sets in Y.)

The space BMOA does not have the Dunford-Pettis property, and the corresponding statement had remained open.

Theorem (Anderson, Jovovic, S)

Suppose $H^\infty \subseteq X \subseteq B$. Then $[\varphi_t, X] \not\subseteq X$. In particular, $[\varphi_t, BMOA] \not\subseteq BMOA.$
The theorem is an easy consequence of Proposition. Given any nontrivial semigroup \(\{ \phi_t \} \), there exists \(f \in H^\infty \) such that
\[
\lim \inf_{t \to 0} \| f \circ \phi_t - f \|_{B} \geq 1.
\]

Proof of theorem:
Each test function \(f \) in the proposition is in \(H^\infty \), and hence in \(X \) from the hypothesis that \(H^\infty \subseteq X \).
Since \(X \subseteq B \), the Closed Graph Theorem shows that \(\| \cdot \|_{B} \lesssim \| \cdot \|_{X} \) and bounding the Bloch norm away from 0 bounds the \(X \) norm as well. Thus it follows from the proposition that \(f \notin [\phi_t, X] \), and so \([\phi_t, X] \not\subseteq X \).
The theorem is an easy consequence of

Proposition

Given any nontrivial semigroup \(\{ \varphi_t \} \), there exists \(f \in H^\infty \) such that

\[
\liminf_{t \to 0} \| f \circ \varphi_t - f \|_B \geq 1.
\]
The theorem is an easy consequence of

Proposition

*Given any nontrivial semigroup \(\{ \varphi_t \} \), there exists \(f \in H^\infty \) such that

\[
\liminf_{t \to 0} \| f \circ \varphi_t - f \|_B \geq 1.
\]

proof of theorem:
The theorem is an easy consequence of

Proposition

Given any nontrivial semigroup \(\{\varphi_t\} \), there exists \(f \in H^\infty \) such that

\[
\liminf_{t \to 0} \|f \circ \varphi_t - f\|_B \geq 1.
\]

proof of theorem:

Each test function \(f \) in the proposition is in \(H^\infty \), and hence in \(X \) from the hypothesis that \(H^\infty \subseteq X \).
The theorem is an easy consequence of

Proposition

Given any nontrivial semigroup \(\{ \varphi_t \} \), there exists \(f \in H^\infty \) such that

\[
\liminf_{t \to 0} \| f \circ \varphi_t - f \|_B \geq 1.
\]

proof of theorem:

Each test function \(f \) in the proposition is in \(H^\infty \), and hence in \(X \) from the hypothesis that \(H^\infty \subseteq X \). Since \(X \subseteq B \), the Closed Graph Theorem shows that \(\| \cdot \|_B \lesssim \| \cdot \|_X \) and bounding the Bloch norm away from 0 bounds the \(X \) norm as well.
The theorem is an easy consequence of

Proposition

Given any nontrivial semigroup \(\{ \varphi_t \} \), there exists \(f \in H^\infty \) such that

\[
\liminf_{t \to 0} \| f \circ \varphi_t - f \|_B \geq 1.
\]

proof of theorem:
Each test function \(f \) in the proposition is in \(H^\infty \), and hence in \(X \) from the hypothesis that \(H^\infty \subseteq X \). Since \(X \subseteq B \), the Closed Graph Theorem shows that \(\| \cdot \|_B \lesssim \| \cdot \|_X \) and bounding the Bloch norm away from 0 bounds the \(X \) norm as well. Thus it follows from the proposition that \(f \notin [\varphi_t, X] \), and so \([\varphi_t, X] \nsubseteq X \).
Let \(\{ \phi_t \} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0. Then \(\phi_t(z) = h^{-1}(e^{-ct}h(z)) \), where \(h : D \to \Omega \), \(h(0) = 0 \), \(\text{Re} c \geq 0 \), and \(\Omega \) is spiral-like. Consider the case that \(\text{Re} c > 0 \). Choose \(w_0 \in \partial \Omega \) such that \(|w_0| = \inf \{|w| : w \in \partial \Omega\} \). Then \([0, w_0) \subset \Omega\), so \(w_0 \) is the principal point of an accessible prime end, and hence there is \(\gamma_0 \in \partial D \) such that \(\lim_{r \to 1^-} h(r \gamma_0) = w_0 \). Thus, \(\lim_{r \to 1^-} \phi_t(r \gamma_0) = h^{-1}(e^{-ct}w_0) \in D \), \(t > 0 \).
Let $\{\varphi_t\}$ be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0.
Let \(\{\varphi_t\} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0. Then \(\varphi_t(z) = h^{-1}(e^{-ct}h(z)) \), where \(h : \mathbb{D} \to \Omega, \ h(0) = 0, \ \Re c \geq 0, \) and \(\Omega \) is spiral-like.
sketch of proof of the proposition

Let $\{\varphi_t\}$ be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0.

Then $\varphi_t(z) = h^{-1}(e^{-ct} h(z))$, where $h : \mathbb{D} \to \Omega$, $h(0) = 0$, $\Re c \geq 0$, and Ω is spiral-like. Consider the case that $\Re c > 0$.
Let $\{\varphi_t\}$ be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0.

Then $\varphi_t(z) = h^{-1}(e^{-ct} h(z))$, where $h : \mathbb{D} \to \Omega$, $h(0) = 0$, $\text{Re } c \geq 0$, and Ω is spiral-like. Consider the case that $\text{Re } c > 0$. Choose $w_0 \in \partial \Omega$ such that $|w_0| = \inf\{|w| : w \in \partial \Omega\}$.
sketch of proof of the proposition

Let \(\{ \varphi_t \} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0. Then \(\varphi_t(z) = h^{-1}(e^{-ct} h(z)) \), where \(h : \mathbb{D} \to \Omega, \ h(0) = 0 \), \(\Re c \geq 0 \), and \(\Omega \) is spiral-like. Consider the case that \(\Re c > 0 \). Choose \(w_0 \in \partial \Omega \) such that \(|w_0| = \inf \{|w| : w \in \partial \Omega\} \). Then \([0, w_0) \subset \Omega\).
Let \(\{\varphi_t\} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0.

Then \(\varphi_t(z) = h^{-1}(e^{-ct} h(z)) \), where \(h : \mathbb{D} \to \Omega, \ h(0) = 0 \), \(\text{Re } c \geq 0 \), and \(\Omega \) is spiral-like. Consider the case that \(\text{Re } c > 0 \).

Choose \(w_0 \in \partial \Omega \) such that \(|w_0| = \inf\{|w| : w \in \partial \Omega\} \).

Then \([0, w_0) \subset \Omega\), so \(w_0 \) is the principal point of an accessible prime end,
Let \(\{ \varphi_t \} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0. Then \(\varphi_t(z) = h^{-1}(e^{-ct}h(z)) \), where \(h : \mathbb{D} \to \Omega, \ h(0) = 0, \) \(\text{Re } c \geq 0, \) and \(\Omega \) is spiral-like. Consider the case that \(\text{Re } c > 0. \) Choose \(w_0 \in \partial \Omega \) such that \(|w_0| = \inf \{|w| : w \in \partial \Omega \}. \) Then \([0, w_0) \subset \Omega\), so \(w_0 \) is the principal point of an accessible prime end, and hence there is \(\gamma_0 \in \partial \mathbb{D} \) such that \(\lim_{r \to 1^-} h(r \gamma_0) = w_0. \)
sketch of proof of the proposition

Let \(\{\varphi_t\} \) be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0. Then \(\varphi_t(z) = h^{-1}(e^{-ct} h(z)) \), where \(h : \mathbb{D} \to \Omega, \ h(0) = 0, \) \(\Re c \geq 0, \) and \(\Omega \) is spiral-like. Consider the case that \(\Re c > 0 \).

Choose \(w_0 \in \partial \Omega \) such that \(|w_0| = \inf \{|w| : w \in \partial \Omega\} \). Then \([0, w_0) \subset \Omega\), so \(w_0 \) is the principal point of an accessible prime end, and hence there is \(\gamma_0 \in \partial \mathbb{D} \) such that \(\lim_{r \to 1^-} h(r \gamma_0) = w_0 \).

Thus, \(\lim_{r \to 1^-} \varphi_t(r \gamma_0) = h^{-1}(e^{-ct} w_0) \in \mathbb{D}, \ t > 0. \)
Let $\{\varphi_t\}$ be a nontrivial semigroup, and consider the case that the corresponding Denjoy-Wolff point is 0.
Then $\varphi_t(z) = h^{-1}(e^{-ct} h(z))$, where $h : \mathbb{D} \to \Omega$, $h(0) = 0$, $\text{Re} c \geq 0$, and Ω is spiral-like. Consider the case that $\text{Re} c > 0$. Choose $w_0 \in \partial \Omega$ such that $|w_0| = \inf\{|w| : w \in \partial \Omega\}$.
Then $[0, w_0) \subset \Omega$, so w_0 is the principal point of an accessible prime end, and hence there is $\gamma_0 \in \partial \mathbb{D}$ such that
$$\lim_{r \to 1^-} h(r \gamma_0) = w_0.$$ Thus, $\lim_{r \to 1^-} \varphi_t(r \gamma_0) = h^{-1}(e^{-ct} w_0) \in \mathbb{D}, \quad t > 0.$
Since φ_t is univalent and bounded, $\varphi_t \in D \subset B_0$.

Hence \[\lim_{r \to 1^-} |\varphi_t'(r \gamma_0)| (1 - r) = 0. \]

Let f be an infinite interpolating Blaschke product with zeros all on the radius $\{r \gamma_0 : 0 < r < 1\}$.

Then \[\limsup_{r \to 1^-} |f'(r \gamma_0)| (1 - r) \geq \delta, \]
for some $\delta > 0$.

Also, by continuity of f' on D,
\[\lim_{r \to 1^-} |f'(\varphi_t(r \gamma_0))| (1 - r) = |f'(h - 1)(e^{-ct}w_0)| < \infty. \]

Thus, for all fixed $t > 0$,
\[\|f \circ \varphi_t - f\|_{B_0} \geq \limsup_{r \to 1^-} |f'(\varphi_t(r \gamma_0))\varphi_t'(r \gamma_0) - f'(r \gamma_0)| (1 - r) \geq \delta. \]

Replacing f by f/δ gives \[\|f \circ \varphi_t - f\|_{B_0} \geq 1. \]
Since φ_t is univalent and bounded, $\varphi_t \in D \subset B_0$.

Hence $\lim_{r \to 1^-} |\varphi_t'(r\gamma_0)|(1 - r) = 0$.

Let f be an infinite interpolating Blaschke product with zeros all on the radius $\{r\gamma_0 : 0 < r < 1\}$.

Then $\limsup_{r \to 1^-} |f'(r\gamma_0)|(1 - r) \geq \delta$, for some $\delta > 0$.

Also, by continuity of f' on D,

$$\lim_{r \to 1^-} |f'(\varphi_t(r\gamma_0))\varphi_t'(r\gamma_0) - f'(r\gamma_0)|(1 - r) \geq \delta.$$

Replacing f by f/δ gives $\|f \circ \varphi_t - f\|_{B^\infty} \geq 1$.

Wayne Smith

Composition Semigroups on BMOA and H^∞
Since φ_t is univalent and bounded, $\varphi_t \in \mathcal{D} \subset \mathcal{B}_0$.

Hence \(\lim_{r \to 1^-} |\varphi'_t(r\gamma_0)|(1 - r) = 0. \)

Let f be an infinite interpolating Blaschke product with zeros all on the radius \(\{r\gamma_0 : 0 < r < 1\} \).
Since \(\varphi_t \) is univalent and bounded, \(\varphi_t \in \mathcal{D} \subset \mathcal{B}_0 \).

Hence \(\lim_{r \to 1^-} |\varphi'_t(r\gamma_0)|(1 - r) = 0 \).

Let \(f \) be an infinite interpolating Blaschke product with zeros all on the radius \(\{ r\gamma_0 : 0 < r < 1 \} \).

Then \(\limsup_{r \to 1^-} |f'(r\gamma_0)|(1 - r) \geq \delta \), for some \(\delta > 0 \).
proof continued

Since \(\varphi_t \) is univalent and bounded, \(\varphi_t \in \mathcal{D} \subset \mathcal{B}_0 \).

Hence \(\lim_{r \to 1^-} |\varphi_t'(r\gamma_0)|(1 - r) = 0 \).

Let \(f \) be an infinite interpolating Blaschke product with zeros all on the radius \(\{ r\gamma_0 : 0 < r < 1 \} \).

Then \(\limsup_{r \to 1^-} |f'(r\gamma_0)|(1 - r) \geq \delta \), for some \(\delta > 0 \).

Also, by continuity of \(f' \) on \(\mathbb{D} \),

\[
\lim_{r \to 1^-} |f'(\varphi_t(r\gamma_0))| = |f'(h^{-1}(e^{-ct}w_0))| < \infty.
\]
proof continued

Since \(\varphi_t \) is univalent and bounded, \(\varphi_t \in \mathcal{D} \subset \mathcal{B}_0 \).

Hence \(\lim_{r \to 1^-} |\varphi'_t(r \gamma_0)|(1 - r) = 0 \).

Let \(f \) be an infinite interpolating Blaschke product with zeros all on the radius \(\{r \gamma_0 : 0 < r < 1\} \).

Then \(\limsup_{r \to 1^-} |f'(r \gamma_0)|(1 - r) \geq \delta \), for some \(\delta > 0 \).

Also, by continuity of \(f' \) on \(\mathbb{D} \),

\[
\lim_{r \to 1^-} |f'(\varphi_t(r \gamma_0))| = |f'(h^{-1}(e^{-ct}w_0))| < \infty.
\]

Thus, for all fixed \(t > 0 \),
proof continued

Since φ_t is univalent and bounded, $\varphi_t \in \mathcal{D} \subset \mathcal{B}_0$.

Hence $\lim_{r \to 1^-} |\varphi'_t(r \gamma_0)|(1 - r) = 0$.

Let f be an infinite interpolating Blaschke product with zeros all on the radius $\{r \gamma_0 : 0 < r < 1\}$.

Then $\limsup_{r \to 1^-} |f'(r \gamma_0)|(1 - r) \geq \delta$, for some $\delta > 0$.

Also, by continuity of f' on \mathbb{D},

$$\lim_{r \to 1^-} |f'(\varphi_t(r \gamma_0))| = |f'(h^{-1}(e^{-ct}w_0))| < \infty.$$

Thus, for all fixed $t > 0$,

$$\|f \circ \varphi_t - f\|_\mathcal{B} \geq \limsup_{r \to 1^-} |f'(\varphi_t(r \gamma_0))\varphi'_t(r \gamma_0) - f'(r \gamma_0)|(1 - r)$$

$$\geq \delta.$$
proof continued

Since φ_t is univalent and bounded, $\varphi_t \in \mathcal{D} \subset B_0$.

Hence \[\lim_{r \to 1^-} |\varphi_t'(r\gamma_0)|(1 - r) = 0. \]

Let f be an infinite interpolating Blaschke product with zeros all on the radius $\{r\gamma_0 : 0 < r < 1\}$.

Then \[\limsup_{r \to 1^-} |f'(r\gamma_0)|(1 - r) \geq \delta, \text{ for some } \delta > 0. \]

Also, by continuity of f' on \mathbb{D},
\[\lim_{r \to 1^-} |f'((\varphi_t(r\gamma_0)))| = |f'(h^{-1}(e^{-ct}w_0))| < \infty. \]

Thus, for all fixed $t > 0$,
\[\|f \circ \varphi_t - f\|_B \geq \limsup_{r \to 1^-} |f'(\varphi_t(r\gamma_0))\varphi'_t(r\gamma_0) - f'(r\gamma_0)|(1 - r) \]
\[\geq \delta. \]

Replacing f by f/δ gives $\|f \circ \varphi_t - f\|_B \geq 1$.
Uniform convergence of \(\{ \varphi_t \} \)

From (SG1) and (SG3) we have the pointwise convergence \(\varphi_t(z) \to z \) as \(t \to 0^+ \). This is easily be extended to uniform convergence on compact subsets of \(D \).

It was recently observed by P. Gumenyuk that this extends to uniform convergence on all of \(D \) for every semigroup \(\{ \varphi_t \} \).

Theorem (Gumenyuk; Anderson, Jovovic, S)

For every semigroup \(\{ \varphi_t \} \),

\[
\lim_{t \to 0^+} \| \varphi_t(z) - z \|_{H^\infty} = 0
\]
From (SG1) and (SG3) we have the pointwise convergence
\(\varphi_t(z) \to z \) as \(t \to 0^+ \).
Uniform convergence of \(\{ \varphi_t \} \)

From (SG1) and (SG3) we have the pointwise convergence
\[
\varphi_t(z) \to z \quad \text{as} \quad t \to 0^+.
\]
This is easily be extended to uniform convergence on compact subsets of \(\mathbb{D} \).
Uniform convergence of $\{\varphi_t\}$

From (SG1) and (SG3) we have the pointwise convergence
$\varphi_t(z) \to z$ as $t \to 0^+$.
This is easily be extended to uniform convergence on compact subsets of \mathbb{D}.
It was recently observed by P. Gumenyuk that this extends to uniform convergence on all of \mathbb{D} for every semigroup $\{\varphi_t\}$.

Theorem (Gumenyuk; Anderson, Jovovic, S)

For every semigroup $\{\varphi_t\}$,

$$\lim_{t \to 0^+} \| \varphi_t(z) - z \|_{H^\infty} = 0.$$
Consequences

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\phi_t\}$, $X_P \subset [\phi_t, X]$.

This provides a unified proof of some of the known results mentioned above: $[\phi_t, H_p] = H_p$ and $[\phi_t, A_p] = A_p$, all $\{\phi_t\}$.

$VMOA \subseteq [\phi_t, BMOA]$ and $B_0 \subseteq [\phi_t, B]$, all $\{\phi_t\}$.

And hence also that $VMOA = [\phi_t, VMOA]$ and $B_0 = [\phi_t, B_0]$, all $\{\phi_t\}$.

It also establishes that the natural extension to H^∞ is valid: The disk algebra A satisfies $A \subset [\phi_t, H^\infty]$, all $\{\phi_t\}$.
Consequences

Corollary

*Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.***
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

$\text{VMOA} \subseteq [\varphi_t, \text{BMOA}]$ and $\mathcal{B}_0 \subseteq [\varphi_t, \mathcal{B}]$, all $\{\varphi_t\}$.
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let $X_\mathcal{P}$ be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_\mathcal{P} \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

$VMOA \subseteq [\varphi_t, BMOA]$ and $B_0 \subseteq [\varphi_t, B]$, all $\{\varphi_t\}$.
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

$\text{VMOA} \subseteq [\varphi_t, \text{BMOA}]$ and $\mathcal{B}_0 \subseteq [\varphi_t, \mathcal{B}]$, all $\{\varphi_t\}$.

And hence also that $\text{VMOA} = [\varphi_t, \text{VMOA}]$ and $\mathcal{B}_0 = [\varphi_t, \mathcal{B}_0]$, all $\{\varphi_t\}$.
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

VMOA $\subseteq [\varphi_t, \text{BMOA}]$ and $\mathcal{B}_0 \subseteq [\varphi_t, \mathcal{B}]$, all $\{\varphi_t\}$.

And hence also that VMOA $= [\varphi_t, \text{VMOA}]$ and $\mathcal{B}_0 = [\varphi_t, \mathcal{B}_0]$, all $\{\varphi_t\}$.

It also establishes that the natural extension to H^∞ is valid:
Consequences

Corollary

Let X be a Banach space that contains H^∞, and let X_P be the closure of the polynomials in X. For all semigroups $\{\varphi_t\}$, $X_P \subset [\varphi_t, X]$.

This provides a unified proof of some of the known results mentioned above:

VMOA $\subseteq [\varphi_t, \text{BMOA}]$ and $\mathcal{B}_0 \subseteq [\varphi_t, \mathcal{B}]$, all $\{\varphi_t\}$.

And hence also that $\text{VMOA} = [\varphi_t, \text{VMOA}]$ and $\mathcal{B}_0 = [\varphi_t, \mathcal{B}_0]$, all $\{\varphi_t\}$.

It also establishes that the natural extension to H^∞ is valid:

The disk algebra A satisfies $A \subset [\varphi_t, H^\infty]$, all $\{\varphi_t\}$.
proof of uniform convergence

This time we consider the case that the Denjoy-Wolff point of \(\{ \phi_t \} \) is the point 1 on the unit circle. Then there is \(c \in \mathbb{C} \) with \(\Re c \geq 0 \) and univalent \(h : D \rightarrow \Omega \), where \(\Omega \) close-to-convex, such that \(\phi_t(z) = h^{-1}(h(z) + ct) \).

If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).

Suppose \(\phi_t(z) \) does not converge uniformly to \(z \) in \(D \).

Then there exist some \(\delta > 0 \) and infinite sequences \(\{ t_n \} \), \(t_n \to 0^+ \) and \(\{ z_n \} \subset D \) such that \(\delta \leq |\phi_{t_n}(z_n) - z_n| \), \(n \geq 1 \).

Letting \(w_n = h(z_n) \in \Omega \),

\[
|\phi_{t_n}(z_n) - z_n| = |h^{-1}(h(z_n) + ct_n) - h^{-1}(h(z_n))| = |h^{-1}(w_n + ct_n) - h^{-1}(w_n)|.
\]
This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.
proof of uniform convergence

This time we consider the case that the Denjoy-Wolff point of
\(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\text{Re } c \geq 0 \) and univalent \(h : \mathbb{D} \to \Omega \),
where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \).
proof of uniform convergence

This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\Re c \geq 0 \) and univalent \(h : \mathbb{D} \rightarrow \Omega \), where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \). If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).
proof of uniform convergence

This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\text{Re } c \geq 0 \) and univalent \(h : \mathbb{D} \to \Omega \), where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \). If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).

Suppose \(\varphi_t(z) \) does not converge uniformly to \(z \) in \(\mathbb{D} \).
proof of uniform convergence

This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\Re c \geq 0 \) and univalent \(h : \mathbb{D} \to \Omega \), where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \). If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).

Suppose \(\varphi_t(z) \) does not converge uniformly to \(z \) in \(\mathbb{D} \).

Then there exist some \(\delta > 0 \) and infinite sequences \(\{ t_n \}, t_n \to 0^+ \) and \(\{ z_n \} \subset \mathbb{D} \) such that

\[
\delta \leq |\varphi_{t_n}(z_n) - z_n|, \quad n \geq 1.
\]
This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\Re c \geq 0 \) and univalent \(h : \mathbb{D} \rightarrow \Omega \), where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \).

If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).

Suppose \(\varphi_t(z) \) does not converge uniformly to \(z \) in \(\mathbb{D} \).

Then there exist some \(\delta > 0 \) and infinite sequences \(\{ t_n \} \), \(t_n \rightarrow 0^+ \) and \(\{ z_n \} \subset \mathbb{D} \) such that

\[
\delta \leq |\varphi_{t_n}(z_n) - z_n|, \quad n \geq 1.
\]

Letting \(w_n = h(z_n) \in \Omega \),

Wayne Smith Composition Semigroups on BMOA and \(H^\infty \)
This time we consider the case that the Denjoy-Wolff point of \(\{ \varphi_t \} \) is the point 1 on the unit circle.

Then there is \(c \in \mathbb{C} \) with \(\text{Re} \, c \geq 0 \) and univalent \(h : \mathbb{D} \to \Omega \), where \(\Omega \) close-to-convex, such that \(\varphi_t(z) = h^{-1}(h(z) + ct) \).

If \(c = 0 \), the result is trivial. So assume \(c \neq 0 \).

Suppose \(\varphi_t(z) \) does not converge uniformly to \(z \) in \(\mathbb{D} \).

Then there exist some \(\delta > 0 \) and infinite sequences \(\{ t_n \}, t_n \to 0^+ \) and \(\{ z_n \} \subset \mathbb{D} \) such that

\[
\delta \leq |\varphi_{t_n}(z_n) - z_n|, \quad n \geq 1.
\]

Letting \(w_n = h(z_n) \in \Omega \),

\[
|\varphi_{t_n}(z_n) - z_n| = |h^{-1}(h(z_n) + ct_n) - h^{-1}(h(z_n))| = |h^{-1}(w_n + ct_n) - h^{-1}(w_n)|.
\]
proof continued

The points w_n and $w_n + ct_n$ are endpoints of a line segment in Ω which pulls back to the Jordan arc $\eta_n = \{h^{-1}(w_n + ct_n) : 0 \leq t \leq t_n\} \subset D$.

Since $t_n \to 0$ and Ω is compact in the Riemann sphere, we may pass to a subsequence of $\{w_n\}$ and assume the line segment $[w_n, w_n + ct_n] = h(\eta_n) \to w_0 \in \Omega \cup \{\infty\}$.

However, $\text{diam} \eta_n \geq |h^{-1}(w_n + ct_n) - h^{-1}(w_n)| = |\phi_{t_n}(z_n) - z_n| \geq \delta$, contradicting the fact that univalent functions do not have Koebe arcs.

Therefore, $|\phi_{t_n}(z_n) - z_n| \to 0$ uniformly in D as $t \to 0^+$.

Wayne Smith

Composition Semigroups on BMOA and H^∞
The points $w_n + ct_n$ and w_n are endpoints of a line segment in Ω which pulls back to the Jordan arc
\[\eta_n = \{ h^{-1}(w_n + ct) : 0 \leq t \leq t_n \} \subset \mathbb{D}. \]
The points $w_n + ct_n$ and w_n are endpoints of a line segment in Ω which pulls back to the Jordan arc $\eta_n = \{ h^{-1}(w_n + ct) : 0 \leq t \leq t_n \} \subset \mathbb{D}$.

Since $t_n \to 0$ and $\overline{\Omega}$ is compact in the Riemann sphere, we may pass to a subsequence of $\{w_n\}$ and assume the line segment $[w_n, w_n + ct_n] = h(\eta_n) \to w_0 \in \overline{\Omega} \cup \{\infty\}$.
The points $w_n + ct_n$ and w_n are endpoints of a line segment in Ω which pulls back to the Jordan arc
$$\eta_n = \{h^{-1}(w_n + ct) : 0 \leq t \leq t_n\} \subset \mathbb{D}.$$

Since $t_n \to 0$ and $\overline{\Omega}$ is compact in the Riemann sphere, we may pass to a subsequence of $\{w_n\}$ and assume the line segment $[w_n, w_n + ct_n] = h(\eta_n) \to w_0 \in \overline{\Omega} \cup \{\infty\}$.

However,
$$\text{diam } \eta_n \geq |h^{-1}(w_n + ct_n) - h^{-1}(w_n)| = |\varphi_{t_n}(z_n) - z_n| \geq \delta,$$
contradicting the fact that univalent functions do not have Koebe arcs.
The points $w_n + ct_n$ and w_n are endpoints of a line segment in Ω which pulls back to the Jordan arc

$$\eta_n = \{ h^{-1}(w_n + ct) : 0 \leq t \leq t_n \} \subset \mathbb{D}.$$

Since $t_n \to 0$ and $\overline{\Omega}$ is compact in the Riemann sphere, we may pass to a subsequence of $\{w_n\}$ and assume the line segment $[w_n, w_n + ct_n] = h(\eta_n) \to w_0 \in \overline{\Omega} \cup \{\infty\}$.

However,

$$\text{diam } \eta_n \geq |h^{-1}(w_n + ct_n) - h^{-1}(w_n)| = |\varphi_{t_n}(z_n) - z_n| \geq \delta,$$

contradicting the fact that univalent functions do not have Koebe arcs.

Therefore, $|\varphi_t(z) - z| \to 0$ uniformly in \mathbb{D} as $t \to 0^+$.

Mahalo!