Appendix A

Zorn Lemma

In this Appendix we review basic set theoretical results, which are consequences of the following postulate:

Axiom of Choice. Given any non-empty collection \(\{X_i : i \in I\} \) of non-empty sets, the cartesian product

\[
\prod_{i \in I} X_i
\]

is non-empty.

Recall that the cartesian product is defined as

\[
\prod_{i \in I} = \{f : I \to \bigcup_{i \in I} X_i : f(i) \in X_i, \ \forall i \in I\}.
\]

In order to formulate several consequences of the Axion of Choice, we need several concepts.

Definitions. Given a set \(X \), by a relation on \(X \) one means simply as subset \(R \subset X \times X \). The standard notation for relations is:

\[
x \mathrel{R} y \iff (x, y) \in R.
\]

An order relation on \(X \) is a relation \(\prec \) with the following properties:

- \(x \prec x, \ \forall x \in X \);
- if \(x, y, z \in X \) satisfy \(x \prec y \) and \(y \prec z \), then \(x \prec z \);
- if \(x, y \in X \) satisfy \(x \prec y \) and \(y \prec x \), then \(x = y \).

In this case the pair \((X, \prec)\) is called an ordered set.

An ordered set \((X, \prec)\) is said to be totally ordered, if

- for any elements \(x, y \in X \) one has either \(x \prec y \) or \(y \prec x \).

More generally, given an (arbitrary) ordered set \((X, \prec)\), by a totally ordered subset of \((X, \prec)\), one means a subset \(T \subset X \), which becomes totally ordered with respect to the order relation \(\prec \mid_T \).

Example. Fix a set \(M \), and take \(X \) to be the collection of all subsets of \(M \). Then \(X \) carries a natural order relation defined by inclusion:

\[
A \prec B \iff A \subset B.
\]

A totally ordered subset \(T \) of \((X, \subset)\) is called a chain of subsets of \(M \). Two subset \(A, B \subset M \) will be said to be comparable, if either \(A \subset B \), or \(B \subset A \), i.e. the collection \(\{A, B\} \) is a chain of subsets of \(M \).

\(^1\) By a “collection of sets” one simply means a set whose elements are sets themselves.
DEFINITION. Let M be a set. A collection \mathcal{F} of subsets of M is said to have the chain property, if

(c) whenever $C \subset \mathcal{F}$ is a chain, it follows that the union $\bigcup_{C \in \mathcal{E}} C$ also belongs to \mathcal{F}.

Lemma A.1. Let M be a set, let \mathcal{F} be a collection of subsets of M with the chain property. For every set $A \in \mathcal{F}$, the collection

$$\text{comp}(A; \mathcal{F}) = \{ B \in \mathcal{F} : B \text{ comparable to } A \}$$

has the chain property.

Proof. Let $C \subset \text{comp}(A; \mathcal{F})$ be a chain, and put $T = \bigcup_{C \in \mathcal{F}} C$. Since \mathcal{F} has the chain property, we have $T \in \mathcal{F}$. To show that T is comparable with A, we consider the two possibilities:

Case 1: $A \supset C$, for all $C \in \mathcal{F}$. In this case we have $A \supset \bigcup_{C \in \mathcal{F}} C = T$.

Case 2: There exists $C_0 \in \mathcal{F}$, such that $A \subset C_0$. In this case we have $A \subset C_0 \subset T$. □

Lemma A.2. Let M be some non-empty set, let \mathcal{F} be a non-empty collection of subsets of M, with the chain property. Suppose one has a map $\mathcal{F} \ni A \mapsto x_A \in M$, with the property that $A \cup \{ x_A \} \in \mathcal{F}, \forall A \in \mathcal{F}$. Then there exists $A \in \mathcal{F}$ such that $x_A \in A$.

Proof. For each $A \in \mathcal{F}$ we define $A^+ = A \cup \{ x_A \}$. Call a subset $\mathcal{G} \subset \mathcal{F}$ inductive, if it has the chain property, and

($+$) $A \in \mathcal{G} \Rightarrow A^+ \in \mathcal{G}$.

It is quite clear that if $\mathcal{G}_i, i \in I$ is a collection of inductive subsets of \mathcal{F}, then the intersection $\bigcap_{i \in I} \mathcal{G}_i$ is again an inductive subset of \mathcal{F}.

Fix now some subset $A_0 \in \mathcal{F}$, and define

$$\mathcal{G}_0 = \bigcap_{\text{inductive } A_0} \mathcal{G}.$$

Note that the subset $\mathcal{G}_0 = \{ A \in \mathcal{F} : A \supset A_0 \}$ is an inductive subset of \mathcal{F}, so in particular, \mathcal{G}_0 is non-empty, and $\mathcal{G}_0 \subset \mathcal{F}_0$, i.e.

(1) $A \supset A_0$, $\forall A \in \mathcal{G}_0$.

Claim: The set \mathcal{G}_0 is a chain.

What we need to prove is the fact that \mathcal{G}_0 is totally ordered by inclusion. Consider the set

$$\mathcal{F} = \{ T \in \mathcal{G} : T \text{ is comparable with every } A \in \mathcal{G}_0 \} = \bigcap_{A \in \mathcal{G}_0} \text{comp}(A; \mathcal{G}_0),$$

and we try to prove that $\mathcal{F} = \mathcal{G}_0$. By Lemma A.1 it is clear that \mathcal{F} has the chain property. Using (1), it is clear that $A_0 \in \mathcal{G}_0$. Finally, we need to prove property ($+$). We prove this indirectly as follows. Fix $T \in \mathcal{F}$, consider the collection

$$\forall T = \text{comp}(T^+; \mathcal{G}_0) = \{ A \in \mathcal{G}_0 : A \text{ comparable with } T^+ \},$$
and let us prove that $V_T = S_0$, by showing that V_T is an inductive set, and contains A_0. First of all, by Lemma A.1, it follows that V_T has the chain property. Secondly, using (1) we have $A_0 \subset T \subset T^+$, so $A_0 \in V_T$. Finally, to check property (+), we start with some $V \in V_T$, and we show that $V^+ \in V_T$. In the case when $T^+ \subset V$, we are done, because we have $T^+ \subset V \subset V^+$. Assume $T^+ \not\subset V$, so that we have $V \subset T$. Since T is comparable with V^+, we either have $V^+ \subset T$, in which case we are done, or we have $T \subset V^+$. In the latter case, we have $V \subset T \subset V^+$. Since $V^+ = V \cup \{x_V\}$, the above inclusions forces either $T = V$, which gives $T^+ = V^+$, or $T = V^+$. Clearly, either case gives $V^+ \in V_T$. Having shown that V_T is inductive, the inclusion $V_T \subset S_0$ will force the equality $V_T = S_0$. In turn, the definition of V_T proves that $T^+ \in \mathcal{T}$, so \mathcal{T} is indeed inductive. Finally, the inclusion $\mathcal{T} \subset S_0$ then forces $\mathcal{T} = S_0$, and by the definition of \mathcal{T}, it follows that S_0 is indeed a chain.

Having proven the Claim, we now take $A = \bigcup_{G \in S_0} G$. Since S_0 has the chain property, it follows that $A \in S_0$. By construction we have $A \supset G$, $\forall G \in S_0$.

In particular we have $A \supset A^+$, which clearly forces $x_A \in A$. □

Definitions. Let (X, \prec) be an ordered set. By a maximal element for X one means an element $x \in X$ with the property:

$$\{y \in X : x \prec y\} = \{x\}.$$

In other words, this means that there is no element $y \in X$, with $x \prec y$ and $y \neq x$.

Given a subset $S \subset X$, an element $x \in X$ is said to be an upper bound for S, if $s \prec x$, $\forall s \in S$.

If such an x exists, we say that S has an upper bound. (It is not assumed that x belongs to S!)

Lemma A.3 ("Easy" Zorn Lemma). Let M be a set, and let \mathcal{F} be a collection of subsets of M. Assume

- the Axiom of Choice is true;
- \mathcal{F} has the chain property;
- \mathcal{F} and is hereditary, in the sense that, whenever $A \in \mathcal{F}$, it follows that all subsets of A belong to \mathcal{F}.

Then, when equipped with the inclusion relation, (\mathcal{F}, \subset) has at least one maximal element.

Proof. The proof will be carried on by contradiction. Assume no $A \in \mathcal{F}$ is maximal. For each $A \in \mathcal{F}$, define

$$X_A = \{x \in M : A \cup \{x\} \in \mathcal{F}\}.$$

Claim: For every $A \in \mathcal{F}$, the set X_A is non-empty.

Indeed, since A is not maximal, there exists some $B \in \mathcal{F}$, with $A \subsetneq B$. In particular, there exists some $x \in B \setminus A$, and since $A \cup \{x\} \subset B$, by the hereditary property, it follows that $x \in X_A$.

Use now the Axiom of Choice, to find a map

$$\mathcal{F} \ni A \longrightarrow x_A \in M,$$
such that $x_A \in X_A$, $\forall A \in \mathcal{F}$. This means that $A \cup \{x_A\} \in \mathcal{F}$, and $x_A \not\in A$, for all $A \in \mathcal{F}$. By Lemma A.2 this is however impossible. □

Theorem A.1 (Zorn Lemma). Assume the Axiom of Choice is true. Let (X, \prec) be a non-empty ordered set, with the following property:

1. (z) every totally ordered subset $A \subset X$ has an upper bound.

Then X has at least one maximal element.

Proof. Define the collection

$$\mathcal{F} = \{A \subset X : A \text{ totally ordered subset}\}.$$

Clearly \mathcal{F} is non-empty (it contains, for instance, all singletons).

It is quite clear that \mathcal{F} satisfies the hypothesis of Lemma A.3. So (\mathcal{F}, \subset) has a maximal element A. Take now x to be an upper bound for A, i.e. $a \prec x$, $\forall a \in A$.

Now we prove that x is maximal for (X, \prec). Suppose $y \in X$ satisfies $x \prec y$. Then clearly $A \cup \{y\}$ will still be a totally ordered subset of X, i.e. $A \cup \{y\} \in \mathcal{F}$. The maximality of A in (\mathcal{F}, \subset) will force $A \cup \{y\} = A$, so we get $y \in A$, hence $y \prec x$. Since we also have $x \prec y$, this forces $y = x$. □