5. Topology preliminaries V: Locally compact spaces

Definition. A locally compact space is a Hausdorff topological space with the property

(lc) Every point has a compact neighborhood.

One key feature of locally compact spaces is contained in the following;

Lemma 5.1. Let X be a locally compact space, let K be a compact set in X, and let D be an open subset, with $K \subset D$. Then there exists an open set E with:

(i) E compact;
(ii) $K \subset E \subset E \subset D$.

Proof. Let us start with the following

Particular case: Assume K is a singleton $K = \{x\}$.

Start off by choosing a compact neighborhood N of x. Using the results from section 4, when equipped with the induced topology, the set N is normal. In particular, if we consider the closed sets $A = \{x\}$ and $B = N \setminus D$, which are also closed in the induced topology, it follows that there exist sets $U, V \subset N$, such that

- $U \supset \{x\}$, $V \supset B$, $U \cap V = \emptyset$;
- U and V are open in the induced topology on N.

The second property means that there exist open sets $U_0, V_0 \subset X$, such that $U = N \cap U_0$ and $V = N \cap V_0$. Let $E = \text{Int}(U)$. By construction E is open, and $E \ni x$. Also, since $E \subset U \subset N$, it follows that

$E \subset \overline{N} = N$.

In particular this gives the compactness of E. Finally, since we obviously have

$E \cap V_0 \subset U \cap V_0 = N \cap U_0 \cap V_0 = U \cap V = \emptyset$,

we get $E \subset X \setminus V_0$, so using the fact that $X \setminus V_0$ is closed, we also get the inclusion $\overline{E} \subset X \setminus V_0$. Finally, combining this with (1) and with the inclusion $N \setminus D \subset V \subset V_0$, we will get

$\overline{E} \subset N \cap (X \setminus V_0) \subset N \cap (N \setminus D) \subset D$,

and we are done.

Having proven the particular case, we proceed now with the general case. For every $x \in K$ we use the particular case to find an open set $E(x)$, with $E(x)$ compact, and such that $x \in E(x) \subset \overline{E(x)} \subset D$. Since we clearly have $K \subset \bigcup_{x \in K} E(x)$, by compactness, there exist $x_1, \ldots, x_n \in K$, such that $K \subset E(x_1) \cup \cdots \cup E(x_n)$. Notice that if we take $E = E(x_1) \cup \cdots \cup E(x_n)$, then we clearly have

$K \subset E \subset \overline{E} \subset \overline{E(x_1)} \cup \cdots \cup \overline{E(x_n)} \subset D$,

25
and we are done. \(\square\)

One of the most useful result in the analysis on locally compact spaces is the following.

Theorem 5.1 (Urysohn’s Lemma for locally compact spaces). Let \(X\) be a locally compact space, and let \(K,F \subset X\) be two disjoint sets, with \(K\) compact, and \(F\) closed. Then there exists a continuous function \(f : X \to [0,1]\) such that \(f|_K = 1\) and \(f|_F = 0\).

Proof. Apply Lemma 5.1 for the pair \(K \subset X \setminus F\) and find an open set \(E\), with \(E\) compact, such that \(K \subset E \subset [E \subset X \setminus F\). Apply again Lemma 5.1 for the pair \(K \subset E\) and find another open set \(G\) with \(\overline{G}\) compact, such that \(K \subset G \subset \overline{G} \subset E\).

Let us work for the moment in the space \(E\) (equipped with the induced topology). This is a compact Hausdorff space, hence it is normal. In particular, using Urysohn Lemma (see section 1) there exists a continuous function \(g : E \to [0,1]\) such that \(g|_K = 0\) and \(g|_{E \setminus G} = 0\). Let us now define the function \(f : X \to [0,1]\) by

\[
f(x) = \begin{cases}
g(x) & \text{if } x \in E \\
0 & \text{if } x \in X \setminus E
\end{cases}
\]

Notice that \(f|_E = g|_E\), so \(f|_E\) is continuous. If we take the open set \(A = X \setminus \overline{G}\), then it is also clear that \(f|_A = 0\). So now we have two open sets \(E\) and \(A\), with \(A \cup E = X\), and \(f|_A\) and \(f|_E\) both continuous. Then it is clear that \(f\) is continuous. The other two properties \(f|_K = 1\) and \(f|_F = 0\) are obvious. \(\square\)

We now discuss an important notion which makes the linkage between locally compact spaces and compact spaces.

Definition. Let \(X\) be a locally compact space. By a compactification of \(X\) one means a pair \((\theta,T)\) consisting of a compact Hausdorff space \(T\), and of a continuous map \(\theta : X \to T\), with the following properties

(i) \(\theta(X)\) is a dense open subset of \(T\);

(ii) when we equip \(\theta(X)\) with the induced topology, the map \(\theta : X \to \theta(X)\) is a homeomorphism.

Notice that, when \(X\) is already compact, any compactification \((\theta,T)\) of \(X\) is necessarily made up of a compact space \(T\), and a homeomorphism \(\theta : X \to T\).

Examples 5.1.

A. Take \([-\infty,\infty] = \mathbb{R} \cup \{-\infty,\infty\}\), with the “usual” topology, in which a set \(D \subset [-\infty,\infty]\) is open if \(D = D_0 \cup D_1 \cup D_2\), where \(D_0\) is open in \(\mathbb{R}\) and \(D_1,D_2 \in \{\emptyset\} \cup \{(a,\infty) : a \in \mathbb{R}\} \cup \{(-\infty,a) : a \in \mathbb{R}\}\). Then \([-\infty,\infty]\) is a compactification of \(\mathbb{R}\).

B. (Alexandrov compactification) Suppose \(X\) is a locally compact space, which is not compact. We form a disjoint union with a singleton \(X^\alpha = X \cup \{\infty\}\), and we equip the space \(X^\alpha\) with the topology in which a subset \(D \subset X^\alpha\) is declared to be open, if either \(D\) is an open subset of \(X\), or there exists some compact subset \(K \subset X\), such that \(D = (X \setminus K) \cup \{\infty\}\). Define the inclusion map \(i : X \hookrightarrow X^\alpha\). Then \((i : X^\alpha\) is a compactification of \(X\), which is called the Alexandrov compactification. The fact that \(i(X)\) is open in \(X^\alpha\), and \(i : X \to i(X)\) is a homeomorphism, is clear. The density of \(i(X)\) in \(X^\alpha\) is also clear, since every open set \(D \subset X^\alpha\), with \(D \ni \infty\),
is of the form \((X \setminus K) \sqcup \{\infty\}\), for some compact set \(K \subset X\), and then we have \(D \cap \iota(X) = \iota(X \setminus K)\), which is non-empty, because \(X\) is not compact.

Remark that, if \(X\) is already compact, we can still define the topological space \(X^\alpha = X \sqcup \{\infty\}\), but this time the singleto set \(\{\infty\}\) will be also be open. Although \(\iota(X)\) will still be open in \(X^\alpha\), it will not be dense in \(X^\alpha\).

Exercise 1 ♦. Let \(K\) be some compact Hausdorff space, and let \(p \in K\) be some point with the property that the set \(X = K \setminus \{p\}\) is not compact. Equip \(X\) with the induced topology.

(i) Show that \(X\) is locally compact (but non-compact).

(ii) If we denote by \(X^\alpha\) the Alexandrov compactification of \(X\), then the map \(\Psi : X^\alpha \to K\), defined by

\[
\Psi(x) = \begin{cases}
 x & \text{if } x \in X \\
 p & \text{if } x = \infty
\end{cases}
\]

is a homeomorphism.

One should regard the Alexandrov compactification as a minimal one. More precisely, one has the following.

Proposition 5.1. Suppose \(X\) is a locally compact space which is non-compact. Let \((\theta, T)\) be a compactification of \(X\), and let \(X^\alpha = X \sqcup \{\infty\}\) be the Alexandrov compactification. Then there exists a unique continuous map \(\Psi : T \to X^\alpha\), such that \((\Psi \circ \theta)(x) = x, \forall x \in X\). Moreover, the map \(\Psi\) has the property that \(\Psi(y) = \infty\), \(\forall y \in T \setminus \theta(X)\).

Proof. The uniqueness part is pretty obvious, since \(\theta(X)\) is dense in \(T\). For the existence, we use the map \(\theta : X \to T\) to identify \(X\) with an open dense subset of \(T\), and we define \(\Psi : T \to X^\alpha\) by

\[
\Psi(x) = \begin{cases}
 x & \text{if } x \in X \\
 \infty & \text{if } x \in T \setminus X
\end{cases}
\]

so that all we have to prove is the fact that \(\Psi\) is continuous. Start with some open set \(D\) in \(X^\alpha\), and let us prove that \(\Psi^{-1}\) is open in \(T\). There are two cases.

Case I: \(D \subset X\).

This case is trivial, \(\Phi^{-1}(D) = D\), and \(D\) is open in \(X\), hence also open in \(T\).

Case II: \(D \not\subset X\).

In this case \(D \ni \infty\), so there exists some compact set \(K\) in \(X\), such that \(D = X^\alpha \setminus K = (X \setminus K) \cup \{\infty\}\). We then have

\[
\Psi^{-1}(D) = \Psi^{-1}(X \setminus K) \cup \Psi^{-1}(\{\infty\}) = (X \setminus K) \cup (T \setminus X) = T \setminus K.
\]

Since \(K\) is compact in \(X\), it will be compact in \(T\) as well. In particular, \(K\) is closed in \(T\), hence the set \(\Psi^{-1}(D) = T \setminus K\) is indeed open in \(T\).

It turns out that there exists another compactification which is described below, which can be regarded as the largest.

Theorem 5.2 (Stone-Čech). Let \(X\) be a locally compact space. Consider the set

\[
F = \{ f : X \to [0, 1] : f \text{ continuous} \},
\]
and consider the product space
\[T = \prod_{f \in F} [0,1], \]
equipped with the product topology, and define the map \(\theta : X \to T \) by
\[\theta(x) = (f(x))_{f \in F}, \forall x \in X. \]
 Equip the closure \(\bar{\theta}(X) \) with the topology induced from \(T \). Then the pair \((\theta, \bar{\theta}(X)) \) is a compactification of \(X \).

Proof. For every \(f \in F \), let us denote by \(\pi_f : T \to [0,1] \) the coordinate map.

Remark that \(\theta : X \to T \) is continuous. This is immediate from the definition of the product topology, since the continuity of \(\theta \) is equivalent to the continuity of all compositions \(\pi_f \circ \theta \), \(f \in F \). The fact that these compositions are continuous is however trivial, since we have \(\pi_f \circ \theta = f, \forall f \in F \).

Denote for simplicity \(\bar{\theta}(X) \) by \(B \). By Tihonov’s Theorem, the space \(T \) is compact (and obviously Hausdorff), so the set \(B \) is compact as well, being a closed subset of \(T \). By construction, \(\bar{\theta}(X) \) is dense in \(B \), and \(\theta \) is continuous.

At this point, it is interesting to point out the following property

Claim 1: For every \(f \in F \), there exists a unique continuous map \(\tilde{f} : B \to [0,1] \), such that \(\tilde{f} \circ \theta = f \).

The uniqueness is trivial, since \(\bar{\theta}(X) \) is dense in \(B \). The existence is also trivial, because we can take \(\tilde{f} = \pi_f \mid_B \).

We can show now that \(\theta \) is injective. If \(x, y \in X \) are such that \(x \neq y \), then using Urysohn Lemma we can find \(f \in F \), such that \(f(x) \neq f(y) \). The function \(\tilde{f} \) given by Claim 1, clearly satisfies
\[\tilde{f}(\theta(x)) = f(x) \neq f(y) = \tilde{f}(\theta(y)), \]
which forces \(\theta(x) \neq \theta(y) \).

In order to show that \(\bar{\theta}(X) \) is open in \(B \), we need some preparations. For every compact subset \(K \subset X \), we define
\[F_K = \{ f : X \to [0,1] : f \text{ continuous, } f\mid_{X \setminus K} = 0 \}. \]

On key observation is the following.

Claim 2: If \(K \subset X \) is compact, and if \(f \in F_K \), then the continuous function \(\tilde{f} : B \to [0,1] \), given by Claim 1, has the property \(\tilde{f} \mid_{B \setminus \theta(K)} = 0 \).

We start with some \(\alpha \in B \setminus \theta(K) \), and we use Urysohn Lemma to find some continuous function \(\phi : B \to [0,1] \) such that \(\phi(\alpha) = 1 \) and \(\phi\mid_{\theta(K)} = 0 \). Consider the function \(\psi = \phi \cdot \tilde{f} \). Notice that \((\phi \circ \theta)\mid_K = 0 \), which combined with the fact that \(f\mid_{X \setminus K} = 0 \), gives
\[\psi \circ \theta = (\phi \circ \theta) \cdot (\tilde{f} \circ \theta) = (\phi \circ \theta) \cdot f = 0, \]
so using Claim 1 (the uniqueness part), we have \(\psi = 0 \). In particular, since \(\phi(\alpha) = 1 \), this forces \(\tilde{f}(\alpha) = 0 \), thus proving the Claim.

We define now the collection
\[F_c = \bigcup_{K \subset X}^{K \text{ compact}} F_K. \]
Define the set

\[S = \bigcap_{f \in F_c} \pi_f^{-1}(\{0\}). \]

By the definition of the product topology, it follows that \(S \) is closed in \(T \). The fact that \(\theta(X) \) is open in \(B \), is then a consequence of the following fact.

Claim 3: One has the equality \(\theta(X) = B \setminus S \).

Start first with some point \(x \in X \), and let us show that \(\theta(x) \not\in S \). Choose some open set \(D \subset X \), with \(D \) compact, such that \(D \ni x \), and apply Urysohn Lemma to find some continuous map \(f : X \to [0,1] \) such that \(f(x) = 1 \) and \(f|_{X \setminus D} = 0 \).

It is clear that \(f \in F_D \subset F_c \), but \(\pi_f(x) = f(x) = 1 \neq 0 \), which means that \(\theta(x) \not\in \pi_f^{-1}(\{0\}) \), hence \(\theta(x) \not\in S \). Conversely, let us start with some point \(\alpha = (\alpha_f)_{f \in F} \in B \setminus S \), and let us prove that \(\alpha \in \theta(X) \). Since \(\alpha \not\in S \), there exists some \(f \in F_c \), such that \(\pi_f(\alpha) > 0 \). Since \(f \in F_c \), there exists some compact subset \(K \subset X \), such that \(f|_{X \setminus K} = 0 \). Using Claim 2, we know that \(f|_{B \setminus \theta(K)} = 0 \). Since \(\tilde{f}(\alpha) = \pi_f(\alpha) \neq 0 \), this forces \(\alpha \in \theta(K) \subset \theta(X) \).

To finish the proof of the Theorem, all we need to prove now is the fact that \(\theta : X \to \theta(X) \) is a homeomorphism, which amounts to proving that, whenever \(D \subset X \) is open, it follows that \(\theta(D) \) is open in \(B \). Fix an open subset \(D \subset X \). In order to show that \(\theta(D) \) is open in \(B \), we need to show that \(\theta(D) \) is a neighborhood for each of its points. Fix some point \(\alpha \in \theta(D) \), i.e. \(\alpha = \theta(x) \), for some \(x \in D \). Choose some compact subset \(K \subset D \), such that \(x \in \text{Int}(K) \), and apply Urysohn Lemma to find a function \(f \in F_K \), with \(f(x) = 1 \). Consider the continuous function \(\tilde{f} : B \to [0,1] \) given by Claim 1, and apply Claim 2 to conclude that \(\tilde{f}|_{B \setminus \theta(K)} = 0 \).

In particular the open set

\[N = \tilde{f}^{-1}\left((1/2, \infty)\right) \subset B \]

is contained in \(\theta(K) \subset \theta(D) \). Since \(\tilde{f}(\alpha) = f(x) = 1 \), we clearly have \(x \in N \). \(\Box \)

Definition. The compactification \((\theta, \bar{\theta}(X))\), constructed in the above Theorem, is called the *Stone-Cech compactification of X*. The space \(\bar{\theta}(X) \) will be denoted by \(X^\beta \). Using the map \(\theta \), we shall identify from now on \(X \) with a dense open subset of \(X^\beta \). Remark that if \(X \) is compact, then \(X^\beta = X \).

Comment. The Stone-Cech compactification is inherently “Zorn Lemma type” construction. For example, if \(X \) is a locally compact space, then every ultrafilter on \(X \) gives rise to a point in \(X^\beta \), constructed as follows. If \(\theta : X \to X^\beta \) denotes the inclusion map, then for every ultrafilter \(\mathcal{U} \) on \(X \), we consider the ultrafilter \(\theta_* \mathcal{U} \) on \(X^\beta \), and by compactness this ultrafilter converges to some (unique) point in \(X^\beta \). This way one gets a correspondence

\[\lim_{X} : \{ \mathcal{U} \subset \mathcal{F}(X) : \mathcal{U} \text{ ultrafilter on } X \} \to X^\beta. \]

The next two exercises discuss the features of this map.
With these notations, we have X as well as the maps Φ of the product spaces such that Φ is a continuous map, then there exists a unique continuous map Ψ such that $\Phi(\alpha) = \Psi(\alpha)\Phi(\alpha)$.

Exercise 2. Let X be a locally compact space.

A. Prove that, for an ultrafilter U on X, the condition $\lim_{U} X \in X$ is equivalent to the condition that U contains a compact subset of X.

B. Prove that, for two ultrafilters U_1, U_2, the condition $\lim_{U_1} X \neq \lim_{U_2} X$ is equivalent to the existence of two sets $A_1 \in U_1$ and $A_2 \in U_2$, that are “separated by a continuous function,” that is, for which there exists a continuous function $f : X \rightarrow \mathbb{R}$, and numbers $\alpha_1 < \alpha_2$, such that $f(A_1) \subset (-\infty, \alpha_1]$ and $f(A_2) \subset [\alpha_2, \infty)$.

C. Prove that the correspondence $\lim_{U} X$ is surjective.

Exercise 3. Suppose a set X is equipped with the discrete topology. Prove that the correspondence $\lim_{U} X$ is bijective.

The Stone-Cech compactification is functorial, in the following sense.

Proposition 5.2. If X and Y are locally compact spaces, and if $\Phi : X \rightarrow Y$ is a continuous map, then there exists a unique continuous map $\Phi^\beta : X^\beta \rightarrow Y^\beta$, such that $\Phi^\beta|_X = \Phi$.

Proof. We use the notations from Theorem 5.2. Define $F = \{f : X \rightarrow [0, 1] : f \text{ continuous}\}$ and $G = \{g : Y \rightarrow [0, 1] : g \text{ continuous}\}$, the product spaces $T_X = \prod_{f \in F} [0, 1]$ and $T_Y = \prod_{g \in G} [0, 1]$, as well as the maps $\theta_X : X \rightarrow T_X$ and $\theta_Y : Y \rightarrow T_Y$, defined by

$$\theta_X(x) = (f(x))_{f \in F}, \quad \forall x \in X;$$

$$\theta_Y(y) = (g(y))_{g \in G}, \quad \forall y \in Y.$$

With these notations, we have $X^\beta = \overline{\theta_X(X)} \subset T_X$ and $Y^\beta = \overline{\theta_Y(Y)} \subset T_Y$. Using the fact that we have a correspondence $G \ni g \rightarrow g \circ \Phi \in F$, we define the map

$$\Psi : T_X \ni (\alpha_f)_{f \in F} \mapsto (\alpha_{g \circ \Phi})_{g \in G} \in T_Y.$$

Remark that Ψ is continuous. This fact is pretty obvious, because when we compose with coordinate projections $\pi_g : T_Y \rightarrow [0, 1], \ g \in G$, we have $\pi_g \circ \Psi = \pi_{g \circ \Phi}$ where $\pi_{g \circ \Phi} : T_X \rightarrow [0, 1]$ is the coordinate projection, which is automatically continuous. Remark that if we start with some point $x \in X$, then

$$(2) \quad \Psi(\theta_X(x)) = ((g \circ \Phi)(x))_{g \in G} = \theta_Y(\Phi(x)),$$

which means that we have the equality $\Psi \circ \theta_X = \theta_Y \circ \Phi$. Remark first that, since Y^β is closed, it follows that $\Psi^{-1}(Y^\beta)$ is closed in T_X. Second, using (2), we clearly have the inclusion $\theta_X(X) \subset \Psi^{-1}(\theta_Y(Y)) \subset \Psi^{-1}(Y^\beta)$, so using the fact that $\Psi^{-1}(Y^\beta)$ is closed, we get the inclusion

$$X^\beta = \overline{\theta_X(X)} \subset \Psi^{-1}(Y^\beta).$$

In other words, we get now a continuous map $\Phi^\beta = \Psi|_{X^\beta} : X^\beta \rightarrow Y^\beta$, which clearly satisfies $\Phi^\beta \circ \theta_X = \theta_Y \circ \Phi$, which using our conventions means that $\Phi^\beta|_X = \Phi$. The uniqueness is obvious, by the density of X in X^β. \square
Remark 5.1. Suppose X is a locally compact space which is not compact, and Y is a compact Hausdorff space. By the above result, combined with the identification $Y^\beta \simeq Y$, we see that any continuous map $\Phi : X \to Y$ has a unique extension to a continuous map $\Phi^\beta : X^\beta \to Y$. In particular, if one takes (θ, T) to be a compactification of X, then $\theta : X \to T$ extends to a unique continuous map $\theta^\beta : X^\beta \to T$. This explains why the Stone-Cech compactification is sometimes referred to as the “largest” compactification. In particular, if we take (ι, X^α) to be the Alexandrov compactification, we have a continuous map $\iota^\beta : X^\beta \to X^\alpha$, which is given by $\iota^\beta(x) = \infty$, $\forall x \in X^\beta \setminus X$.

Exercise 4. Let X be a locally compact space, let X^β denote its Stone-Cech compactification, and let (θ, T) be an arbitrary compactification of X. Denote by $\theta^\beta : X^\beta \to T$ the map described in the above remark. Prove that for a topological space Y and a map $f : T \to Y$, the following are equivalent

(i) f is continuous;
(ii) the composition $f \circ \theta^\beta : X^\beta \to Y$ is continuous.

This explains how the topology of T can be reconstructed using the map θ^β. More precisely, the topology of T is the strong topology defined by θ^β (see Lemma 3.2).

Exercise 5. The Alexandrov compactification is not functorial. In other words, given locally compact spaces X and Y, and a continuous map $f : X \to Y$, in general there does not exist a continuous map $f^\alpha : X^\alpha \to Y^\alpha$, with $f^\alpha|_X = f$. Give an example of such a situation.

Hint: Consider $X = Y = \mathbb{N}$, equipped with the discrete topology, and define $f : \mathbb{N} \to \mathbb{N}$ by

$$f(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

It turns out that one can define a certain type of continuous maps, with respect to which the Alexandrov compactification is functorial.

Definition. Let X, Y be locally compact spaces, and let $\Phi : X \to Y$ be a continuous map. We say that Φ is proper, if it satisfies the condition

$$K \subset Y, \text{ compact } \Rightarrow \Phi^{-1}(K) \text{ compact in } X.$$

Exercise 6. (Functoriality of Alexandrov compactification). Let X and Y be a locally compact spaces, which are non-compact, and let X^α and Y^α denote their respective Alexandrov compactifications. For a continuous map $\Phi : X \to Y$, prove that the following are equivalent:

(i) Φ is proper;
(ii) the map $\Phi^\alpha : X^\alpha \to Y^\alpha$ defined by $\Phi^\alpha|_X = \Phi$ and $\Phi^\alpha(\infty) = \infty$ is continuous.

The following is an interesting property of proper maps, which will be exploited later, is the following.

Proposition 5.3. Let X, Y be locally compact spaces, let $\Phi : X \to Y$ be a proper continuous map, and let $T \subset X$ be a closed subset. Then the set $\Phi(T)$ is closed in X.

Proof. Start with some point $y \in \Phi(T)$. This means that

$$D \cap \Phi(T) \neq \emptyset,$$

for every open set $D \subset Y$, with $D \ni y$.

Denote by \mathcal{V} the collection of all compact neighborhoods of y. In other words, $V \in \mathcal{V}$, if and only if $V \subset Y$ is compact, and $y \in \text{Int}(V)$. For each $V \in \mathcal{V}$ we define
the set $\tilde{V} = \Phi^{-1}(V) \cap T$. Since Φ is proper, all sets \tilde{V}, $V \in \mathcal{V}$, are compact. Notice also that, for every finite number of sets $V_1, \ldots, V_n \in \mathcal{V}$, if we form the intersection $V = V_1 \cap \cdots \cap V_n$, then $V \in \mathcal{V}$, and $\tilde{V} \subset V$, $\forall j = 1, \ldots, n$. Remark now that, by (3), we have $\tilde{V} \neq \emptyset$, $\forall V \in \mathcal{V}$. Indeed, if we start with some $V \in \mathcal{V}$ and we choose some point $x \in T$, such that $\Phi(x) \in V$, then $x \in \tilde{V}$. Use now the finite intersection property, to get the fact that $\bigcap_{V \in \mathcal{V}} \tilde{V} \neq \emptyset$. Pick now a point $x \in \bigcap_{V \in \mathcal{V}} \tilde{V}$. This means that $x \in T$, and

\begin{equation}
\Phi(x) \in V, \quad \forall V \in \mathcal{V}.
\end{equation}

But now we are done, because this forces $\Phi(x) = y$. Indeed, if $\Phi(x) \neq y$, using the Hausdorff property, one could find some $V \in \mathcal{V}$ with $\Phi(x) \not\in V$, thus contradicting (4).

\textbf{Comment.} When one deals with various compactifications of a non-compact locally compact space, the following extension problem is often discussed.

\textbf{Question:} Let (θ, T) be a compactification of a locally compact space X, let Y be some topological Hausdorff space, and let $\Phi : X \to Y$ be a continuous map. \textit{When does there exist a continuous map $\Psi : T \to Y$, such that $\Psi \circ \theta = \Phi$?}

Of course, such a map (if it exists) is unique. Obviously, by density the existence of Ψ will force $\Psi(T) = \Phi(X)$, so we see that a necessary condition is the fact that $\Phi(X)$ is \textit{compact}. In the case of the Stone-Cech compactification, this condition is also sufficient, by Remark 5.1.

For the Alexandrov compactification, the answer is given by the following.

\textbf{Proposition 5.4.} Let X be a non-compact locally compact space, let Y be a topological Hausdorff space, and let $\Phi : X \to Y$ be a continuous map. \textit{The following are equivalent.}

(i) There exists a continuous map $\Psi : X^\alpha \to Y$ with $\Psi|_X = \Phi$.

(ii) There exists some point $p \in Y$ such that

(*) for every neighborhood V of p, there exists some compact subset $K_V \subset X$ with $\Phi(X \setminus K_V) \subset V$.

Moreover, the map Ψ in (i) is unique, the point p mentioned in (ii) is also unique, and $p = \Psi(\infty)$.

\textbf{Proof.} (ii) \Rightarrow (i). Assume Ψ is as in (ii), and let us prove (i). Take $p = \Psi(\infty)$. Start with some neighborhood V of p. Since Ψ is continuous at ∞, the set $\Psi^{-1}(V)$ is a neighborhood of ∞ in X^α. In particular there exists some compact set $K \subset X$, such that $\Psi^{-1}(V) \supset (X \setminus K) \cup \{\infty\}$. We then obviously have $\Phi(x) = \Psi(x) \in V$, $\forall x \in X \setminus K$.

(i) \Rightarrow (ii). Assume $p \in Y$ satisfies condition (*). Define the map $\Psi : X^\alpha \to Y$ by

$$\Psi(x) = \begin{cases}
\Phi(x) & \text{if } x \in X \\
p & \text{if } x = \infty
\end{cases}$$

and let us show that Ψ is continuous. Since $\Psi|_X = \Phi$, and Φ is continuous, all we need to show is the fact that Ψ is continuous at ∞. Let V be some neighborhood of $p = \Psi(\infty)$, and let us show that $\Psi^{-1}(V)$ is a neighborhood of ∞ in X^α. Take D an open set in Y with $p \in D \subset V$, and use condition (*) to choose some compact set K in X, such that $\Phi(X \setminus K) \subset D$, i.e. $\Phi^{-1}(D) \supset X \setminus K$. We then have
Moreover, for every continuous function \(f : X \rightarrow [0,1] \), one has the equality \(\lim_{\lambda \in \Lambda} f(x_\lambda) = f^\beta(p) \), where \(f^\beta : X^\beta \rightarrow [0,1] \) is the continuous extension of \(f \).