6. Duals of L^p spaces

This section deals with the problem of identifying the duals of L^p spaces, $p \in [1, \infty)$. There are essentially two cases of this problem: (i) $p = 1$; (ii) $1 < p < \infty$. The major difference between these two cases is the fact that for $1 < p < \infty$, there is a “nice” characterization of the dual of L^p which identifies it with L^q (with $\frac{1}{p} + \frac{1}{q} = 1$), and this identification holds without any restriction on the underlying space. On the other hand, the dual of L^1 will be identified with L^∞_{loc}, but this identification will work only if the underlying measure space is decomposable (e.g. σ-finite). Of course, one can also pose the problem of identifying the duals of the spaces L^∞ and L^∞_{loc}, introduced in Section 5, but we shall not deal with it.

We start off with the study of the finite case.

Comment. The finite case is particularly nice, since among other things the L^p spaces contain a “blueprint” of the underlying measure space. More precisely, if (X, \mathcal{A}, μ) is a finite measure space, then the characteristic functions κ_A, $A \in \mathcal{A}$, belong to all spaces $L^p_k(X, \mathcal{A}, \mu)$, $1 \leq p \leq \infty$. The following result somehow explains how the union can be “seen in L^p.”

Lemma 6.1. Let (X, \mathcal{A}, μ) be a finite measure space, let \mathbb{K} be either \mathbb{R} or \mathbb{C}, and let $p \in [1, \infty)$. If $(A_n)_{n=1}^\infty$ is a pairwise disjoint sequence, and if we put $A = \bigcup_{n=1}^\infty A_n$, then one has the equality $\sum_{n=1}^\infty \kappa_{A_n} = \kappa_A$ in $L^p_k(X, \mathcal{A}, \mu)$. In other words, one has the equality

$$\kappa_A = L^p \lim_{n \to \infty} f_n,$$

where $(f_n)_{n=1}^\infty \subset L^p_k(X, \mathcal{A}, \mu)$ is the sequence of partial sums $f_n = \sum_{k=1}^n \kappa_{A_k}$, $n \geq 1$.

Proof. One has $f_n = \kappa_{B_n}$, where $B_n = A_1 \cup \cdots \cup A_n$, $\forall \ n \geq 1$. In particular, we get

$$\int_X |f_n - \kappa_A|^p \, d\mu = \int_X |\kappa_{A \setminus B_n}|^p \, d\mu = \int_X \kappa_{A \setminus B_n} \, d\mu = \mu(A \setminus B_n), \ \forall \ n \geq 1.$$

This computation can be re-written as

$$\|f_n - \kappa_A\|_p = \mu(A \setminus B_n)^{1/p}, \ \forall \ n \geq 1.$$

Notice that using the inclusions $A \setminus B_1 \supset A \setminus B_2 \supset \cdots$, combined with the equality $\bigcap_{n=1}^\infty [A \setminus B_n] = \emptyset$, by the continuity property (it is key here that μ is finite), we get $\lim_{n \to \infty} \mu(A \setminus B_n) = \mu(\emptyset) = 0$, so the equalities (1) immediately give $\lim_{n \to \infty} \|f_n - \kappa_A\|_p = 0$. □

An important consequence of this fact, we get our first duality result.

Theorem 6.1. Let (X, \mathcal{A}, μ) be a finite measure space, let \mathbb{K} be either \mathbb{R} or \mathbb{C}, let $p \in [1, \infty)$, and let $\phi : L^p_k(X, \mathcal{A}, \mu) \to \mathbb{K}$ be a linear continuous map. Define the number $q = p/(p - 1)$ (with the convention $1/0 = \infty$). Then there exists some function $f \in L^q_k(X, \mathcal{A}, \mu)$, such that

$$\phi(g) = \int_X fg \, d\mu, \ \forall \ g \in L^p_k(X, \mathcal{A}, \mu).$$

Moreover one has the following.
and since both ψ are speaking, we have $\psi = \phi$. We get the equality

We know that S so in fact L subspace is $\text{Ran} L$ which comes from the inclusion $L \subset \text{Ran} L$.

We wish to extend the above equality beyond elementary functions.

Proof. We begin with the existence part.

Start off by considering the correspondence

$$\nu_\phi : A \ni A \longmapsto \phi(\mathcal{X}_A) \in \mathbb{K}$$

By Lemma 6.1, ν_ϕ defines a \mathbb{K}-valued measure on \mathcal{A}. Note also that ν_ϕ is absolutely continuous with respect to μ. Indeed, if $A \in \mathcal{A}$ has $\mu(A)$, then $\mathcal{X}_A = 0$ in L^p, so $\nu_\phi(A) = \phi(\mathcal{X}_A) = 0$.

Use the Radon-Nikodym Theorem (the finite case) to find some function $f \in L^1_k(X, \mathcal{A}, \mu)$, such that

$$\phi(\mathcal{X}_A) = \int_X f \mathcal{X}_A \, d\mu, \quad \forall A \in \mathcal{A}. \tag{3}$$

Since ϕ is linear, the equality (3) can be extended to give

$$\phi(g) = \int_X fg \, d\mu, \quad \forall g \in L^p_{K, \text{elem}}(X, \mathcal{A}, \mu). \tag{4}$$

We wish to extend the above equality beyond elementary functions.

Since (X, \mathcal{A}, μ) is finite, one has an injective linear continuous map

$$J_p : L^\infty_k(X, \mathcal{A}, \mu) \to L^p_k(X, \mathcal{A}, \mu),$$

which comes from the inclusion $L^\infty_k(X, \mathcal{A}, \mu) \subset L^p_k(X, \mathcal{A}, \mu)$. Using the map J_p, we identify $L^\infty_k(X, \mathcal{A}, \mu)$ as a linear subspace in $L^p_k(X, \mathcal{A}, \mu)$. (Strictly speaking, this subspace is $\text{Ran} J_p$.) We also know that, one has the obvious inclusions

$$L^p_{\text{elem}, K}(X, \mathcal{A}, \mu) = L^\infty_{\text{elem}, K}(X, \mathcal{A}, \mu) \subset L^\infty_k(X, \mathcal{A}, \mu) \subset L^p_k(X, \mathcal{A}, \mu),$$

so in fact $L^\infty_k(X, \mathcal{A}, \mu)$ is a dense linear subspace of $L^p_k(X, \mathcal{A}, \mu)$.

Claim 1: One has the equality

$$\phi(g) = \int_X fg \, d\mu, \quad \forall g \in L^\infty_k(X, \mathcal{A}, \mu). \tag{5}$$

Consider the linear map $S_f : L^\infty_k(X, \mathcal{A}, \mu) \to \mathbb{K}$, defined by

$$S_f(g) = \int_X fg \, d\mu, \quad \forall g \in L^\infty_k(X, \mathcal{A}, \mu).$$

We know that S_f is continuous (Proposition 5.5). Notice that the restriction $\psi = \phi|_{L^\infty_k(X, \mathcal{A}, \mu)}$ gives rise to a linear continuous map $\psi : L^\infty_k(X, \mathcal{A}, \mu) \to \mathbb{K}$. (Strictly speaking, we have $\psi = \phi \circ J_p$.)

Then the equality (4) gives

$$\psi(g) = \int_X fg \, d\mu = S_f(g), \quad \forall g \in L^\infty_{\text{elem}, K}(X, \mathcal{A}, \mu),$$

and since both ψ and S_f are continuous, and $L^\infty_{\text{elem}, K}(X, \mathcal{A}, \mu)$ is dense in $L^\infty_k(X, \mathcal{A}, \mu)$, we get the equality $\psi = S_f$, which is precisely (5).

Claim 2: The function f belongs to $L^p_k(X, \mathcal{A}, \mu)$.

\section{Duals of L^p spaces}
We start with the easy case $p = 1$. In this case we observe that, since $\|\kappa_A\|_1 = \mu(A), \forall A \in \mathcal{A}$, by the continuity of ϕ, we get

$$|\nu_{\phi}(A)| = |\phi(\kappa_A)| \leq \|\phi\| \cdot \|\kappa_A\|_1 = \|\phi\| \cdot \mu(A), \forall A \in \mathcal{A},$$

so we can apply the “easy” Radon-Nikodym Theorem 4.1, to get the fact that

$$|f| \leq \|\phi\|, \mu\text{-a.e.}$$

We continue with the case $p > 1$. We are going to give an estimate (from above) for $\int_X |f|^q \, d\mu$.

By definition, we know that

$$\int_X |f|^q \, d\mu = \sup \left\{ \int_X h \, d\mu : h \in \mathcal{A}\text{-Elem}_\mathbb{R}(X), \ 0 \leq h \leq |f|^q \right\}.$$

Fix for the moment an \mathcal{A}-elementary function $h : X \to \mathbb{R}$, such that $0 \leq h \leq |f|^q$. Consider the measurable function $u : X \to \mathbb{K}$ by

$$u(x) = \begin{cases} |f(x)|/|f(x)| & \text{if } f(x) \neq 0 \\ 0 & \text{if } f(x) = 0 \end{cases}$$

so that one has the equality $uf = |f|$. Consider now the function $g = uh^{1/p}$. Since $h^{1/p}$ is elementary, and, $|u| \leq 1$, it follows that g is measurable, and bounded, hence in L^∞. By Claim 1, we then have

$$\phi(g) = \int_X fg \, d\mu = \int_X fuh^{\frac{1}{p}} \, d\mu = \int_X |f|h^{\frac{1}{p}} \, d\mu.$$

Among other things, this proves that $\phi(g) = |\phi(g)| \geq 0$, as well as (use $|f| \geq h^{\frac{1}{p}}$) the inequality

$$|\phi(g)| \geq \int_X h^{\frac{1}{2}}h^{\frac{1}{p}} \, d\mu = \int_X h \, d\mu.$$

By the continuity of ϕ, this inequality forces

$$\int_X h \, d\mu \leq \|\phi\| \cdot \|g\|_p. \quad (6)$$

Let us estimate the norm $\|g\|_p$. Since $|g|^p = |u|^p h \leq h$, we clearly have

$$\|g\|_p \leq \left[\int_X h \, d\mu \right]^{\frac{1}{p}},$$

so if we denote $\int_X h \, d\mu$ simply by α, then (6) reads

$$\alpha \leq \|\phi\| \cdot \alpha^{\frac{1}{p}},$$

so we immediately get $\alpha \leq \|\phi\|^q$. Having proven the inequality

$$\int_X h \, d\mu \leq \|\phi\|^q,$$

for all elementary functions h, with $0 \leq h \leq |f|^q$, it now follows that $|f|^q$ is integrable, and

$$\int_X |f|^q \, d\mu \leq \|\phi\|^q,$$

so f indeed belongs to $L^q_{\mathcal{A}}(X, \mathcal{A}, \mu)$ (and moreover, $\|f\|_q \leq \|\phi\|$).

Having proven the existence part, the other properties (i) and (ii) are clear from the results in Sections 3 and 5. \qed
Our next goal is to extend the above result beyond the finite case. In preparation for the proof in the general case, we need to develop a technique for “breaking” a linear continuous map \(\phi : L^p_k(X, \mathcal{A}, \mu) \to \mathbb{K} \) into (small) pieces. For this purpose we introduce the following.

Notations. Let \((X, \mathcal{A}, \mu)\) be a measure space, let \(\mathbb{K}\) be one of the fields \(\mathbb{R}\) or \(\mathbb{C}\), and let \(p \in [1, \infty)\). For any set \(A \in \mathcal{A}\), we define the map
\[
P_A : L^p_k(X, \mathcal{A}, \mu) \ni f \mapsto f|_A \in L^p_k(A, \mathcal{A}, \mu).
\]

It turns out that \(P_A\) is surjective, linear, continuous, and it has a right inverse defined as follows. For \(f \in L^p_k(A, \mathcal{A}, \mu)\), we define the function \(\hat{f} : X \to \mathbb{K}\) by
\[
\hat{f} = \begin{cases}
 f(x) & \text{if } x \in A \\
 0 & \text{if } x \in X \setminus A
\end{cases}
\]
It turns out that \(\hat{f}\) belongs to \(L^p_k(X, \mathcal{A}, \mu)\), and \(\|\hat{f}\|_p = \|f\|_p\), so the correspondence
\[
L^p_k(A, \mathcal{A}, \mu) \ni f \mapsto \hat{f} L^p_k(X, \mathcal{A}, \mu)
\]
gives rise to a linear continuous map
\[
R_A : L^p_k(A, \mathcal{A}, \mu) \to L^p_k(X, \mathcal{A}, \mu),
\]
which satisfies \(P_A \circ R_A = \text{Id}\). Remark also that the composition the other way can be described as the multiplication map by \(\kappa_A\) (see Section 5):
\[
R_A \circ P_A = M^p_{\kappa_A}.
\]

Definitions. Let \((X, \mathcal{A}, \mu)\) be a measure space, let \(\mathbb{K}\) be one of the fields \(\mathbb{R}\) or \(\mathbb{C}\), and let \(p \in [1, \infty)\). Given any linear continuous map \(\phi : L^p_k(X, \mathcal{A}, \mu) \to \mathbb{K}\), we define, for every \(A \in \mathcal{A}\) the linear continuous maps
\[
\phi|_A = \phi \circ R_A : L^p_k(A, \mathcal{A}, \mu) \to \mathbb{K},
\]
\[
\phi_A = \phi \circ M^p_{\kappa_A} : L^p_k(X, \mathcal{A}, \mu) \to \mathbb{K}.
\]

One has the obvious equalities
\[
\phi_A = (\phi|_A) \circ P_A \text{ and } \phi|_A = \phi_A \circ R_A.
\]
Notice also that one has the equality
\[
\phi_A(f) = \phi_A(f \kappa_A), \quad \forall f \in L^p_k(X, \mathcal{A}, \mu).
\]
Remark that, since \(\|P_A\| = \|R_A\| \leq 1\), one also has
\[
\|\phi|_A\| = \|\phi_A\| \leq \|\phi\|.
\]
If we take \(A = X\), we clearly have \(\phi_X = \phi|_X = \phi\). Note also, that given sets \(A, B \in \mathcal{A}\) with \(A \supset B\), then one has
\[
(\phi_A)_B = \phi_B \text{ and } (\phi|_A)_B = \phi|_B.
\]

In particular one has \(\|\phi_A\| = \|\phi|_A\| \geq \|\phi_B\| = \|\phi|_B\|\).

Remarks 6.1. Use the notations above. Suppose \(A_1, \ldots, A_n \in \mathcal{A}\) are pairwise disjoint, and let \(A = A_1 \cup \cdots \cup A_n\).

A. For any linear continuous map \(\phi : L^p_k(X, \mathcal{A}, \mu)\), one has the equality
\[
\phi_A = \phi_{A_1} + \cdots + \phi_{A_n}.
\]
This is a consequence of the fact that the correspondence
\[L^\infty_{\text{loc}}(X,\mathcal{A},\mu) \ni f \mapsto M^p_f \in \mathcal{L}(L^p_{\mathbb{K}}(X,\mathcal{A},\mu)) \]
is linear, so in particular one has
\[M^p_{\mathcal{A}_g} = M^p_{\mathcal{A}_1} + \cdots + M^p_{\mathcal{A}_n}. \]

B. For any \(g \in L^p_{\mathbb{K}}(X,\mathcal{A},\mu) \), one has the equality
\[\|g \mathcal{A}_g\|_p = \left(\left\|g \mathcal{A}_1\right\|_p^p + \cdots + \left\|g \mathcal{A}_n\right\|_p^p\right)^{\frac{1}{p}}. \]

This is quite clear, since
\[\left(\left\|g \mathcal{A}_g\right\|_p^p\right) = \int_X \left\|g \mathcal{A}_g\right\|_p d\mu = \sum_{k=1}^n \int_X \left\|g \mathcal{A}_k\right\|_p d\mu = \sum_{k=1}^n \left\|g \mathcal{A}_k\right\|_p^p. \]

The following result gives an important property of these operations.

Lemma 6.2. Let \((X,\mathcal{A},\mu)\) be a measure space, let \(\mathbb{K}\) be either \(\mathbb{R}\) or \(\mathbb{C}\), and let \(A, B \in \mathcal{A}\) be disjoint sets.

A. For any linear continuous map \(\phi : L^p_{\mathbb{K}}(X,\mathcal{A},\mu) \to \mathbb{K}\), one has
\[\|\phi_{A\cup B}\| = \max\left\{\|\phi_A\|,\|\phi_B\|\right\}. \]

B. If \(p, q \in (1, \infty)\) are such that \(\frac{1}{p} + \frac{1}{q} = 1\), then for any linear continuous map \(\phi : L^p_{\mathbb{K}}(X,\mathcal{A},\mu) \to \mathbb{K}\), one has
\[\|\phi_{A\cup B}\| = \left[\|\phi_A\|^p + \cdots + \|\phi_A\|^q\right]^{\frac{1}{q}}. \]

Proof. One useful observation is the fact that, for every \(p \in [1, \infty)\) and every linear continuous map \(\phi : L^p_{\mathbb{K}}(X,\mathcal{A},\mu) \to \mathbb{K}\), one has
\[(1) \quad \phi_{A\cup B}(g) = \phi_A(g) + \phi_B(g) = \phi_A(g \mathcal{A}_A) + \phi_B(g \mathcal{A}_B), \quad \forall g \in L^p_{\mathbb{K}}(X,\mathcal{A},\mu). \]

A. Let us remark first that, since \((\phi_{A\cup B})_A = \phi_A\) and \((\phi_{A\cup B})_B = \phi_B\), we clearly have \(\|\phi_{A\cup B}\| \geq \max\left\{\|\phi_A\|,\|\phi_B\|\right\}\). To prove the other inequality \(\|\phi_{A\cup B}\| \leq \max\left\{\|\phi_A\|,\|\phi_B\|\right\}\), we must show that
\[(2) \quad \|\phi_{A\cup B}(g)\| \leq \max\left\{\|\phi_A\|,\|\phi_B\|\right\} \cdot \|g\|_1, \quad \forall g \in L^1_{\mathbb{K}}(X,\mathcal{A},\mu). \]

Start with some \(g \in L^1_{\mathbb{K}}(X,\mathcal{A},\mu)\). Using (1), we clearly have
\[\|\phi_{A\cup B}(g)\| \leq \|\phi_A(g \mathcal{A}_A)\| + \|\phi_B(g \mathcal{A}_B)\| \leq \|\phi_A\| \cdot \|g \mathcal{A}_A\|_1 + \|\phi_B\| \cdot \|g \mathcal{A}_B\|_1 \leq \max\left\{\|\phi_A\|,\|\phi_B\|\right\} \cdot (\|g \mathcal{A}_A\|_1 + \|g \mathcal{A}_B\|_1) \]
\[\leq \max\left\{\|\phi_A\|,\|\phi_B\|\right\} \cdot (\|g \mathcal{A}_A\|_1 + \|g \mathcal{A}_B\|_1) \]
Using Remark 6.1.B we also have
\[\|g \mathcal{A}_A\|_1 + \|g \mathcal{A}_B\|_1 = \|g \mathcal{A}_{A\cup B}\|_1 \leq \|g\|_1, \]
and then using (9) we immediately get (8)

B. We first prove the inequality
\[(3) \quad \|\phi_{A\cup B}\| \geq \left[\|\phi_A\|^p + \|\phi_B\|^q\right]^{\frac{1}{q}}. \]
We assume \(\|\phi_A\|,\|\phi_B\| > 0\) (otherwise there is nothing to prove). Start with some \(\varepsilon\) with \(0 < \varepsilon < \min\{\|\phi_A\|,\|\phi_B\|\}\), and choose two functions \(g, h \in L^p_{\mathbb{K}}(X,\mathcal{A},\mu)\) with \(\|g\|_p,\|h\|_p \leq 1\) such that
\[|\phi_A(g)| \geq \|\phi_A\| - \varepsilon \quad \text{and} \quad |\phi_B(h)| \geq \|\phi_B\| - \varepsilon. \]
Replacing \(g \) with \(\frac{\phi_A(g)}{\phi_A(g)} \), we can assume that \(\phi_A(g) = |\phi_A(g)| \). Similarly, we can assume \(\phi_B(h) = |\phi_B(h)| \).

Fix for the moment an arbitrary pair \((\alpha, \beta) \in [0, \infty)^2\), with \(\alpha^p + \beta^p = 1 \), and define the function

\[
f = \alpha \varkappa_A + \beta \varkappa_B.
\]

By construction we have \(f = f \varkappa_{A \cup B} \), as well as \(f \varkappa_A = \alpha \varkappa_A \) and \(f \varkappa_B = \beta \varkappa_B \), so by Remark 6.1.B, we have

\[
\|f\|_p = \left[(\|\alpha \varkappa_A\|_p)^p + (\|\beta \varkappa_B\|_p)^p \right]^{\frac{1}{p}} \leq \left[(\|\alpha\|_p)^p + (\|\beta\|_p)^p \right]^{\frac{1}{p}} \leq [\alpha^p + \beta^p]^{\frac{1}{p}} = 1,
\]

so we get

\[
\|\phi_{A \cup B}\| \geq |\phi_{A \cup B}(f)|.
\]

Notice that, since \(\varkappa_A \varkappa_B = 0 \), clearly have have

\[
\phi_A(f) = \phi_A(\alpha \varkappa_A) = \alpha |\phi_A(g)| \quad \text{and} \quad \phi_B(f) = \phi_B(\beta \varkappa_B) = \beta |\phi_B(h)|,
\]

which yields

\[
\phi_{A \cup B}(f) = \alpha |\phi_A(g)| + \beta |\phi_B(g)| \geq \alpha (\|\phi_A\| - \varepsilon) + \beta (\|\phi_B\| - \varepsilon).
\]

Since \(\|f\|_p \leq 1 \), by the definition of the norm, the above estimate forces

\[
\|\phi_{A \cup B}\| \geq \alpha (\|\phi_A\| - \varepsilon) + \beta (\|\phi_B\| - \varepsilon).
\]

In the above inequality \(\alpha, \beta \in [0, \infty) \) are arbitrary, subject to \(\alpha^p + \beta^p = 1 \). In particular, if we consider numbers

\[
\alpha = \left[\frac{(\|\phi_A\| - \varepsilon)^q}{(\|\phi_A\| - \varepsilon)^q + (\|\phi_B\| - \varepsilon)^q} \right]^{\frac{1}{q}} \quad \text{and} \quad \beta = \left[\frac{(\|\phi_B\| - \varepsilon)^q}{(\|\phi_A\| - \varepsilon)^q + (\|\phi_B\| - \varepsilon)^q} \right]^{\frac{1}{q}},
\]

we get

\[
\|\phi_{A \cup B}\| \geq \left(\|\phi_A\| - \varepsilon \right)^{\frac{1}{q} + 1} + \left(\|\phi_B\| - \varepsilon \right)^{\frac{1}{q} + 1} \left[\left(\|\phi_A\| - \varepsilon \right)^q + \left(\|\phi_B\| - \varepsilon \right)^q \right]^{\frac{1}{q}} = \left(\|\phi_A\| - \varepsilon \right)^{\frac{1}{q} + 1} \left[\left(\|\phi_A\| - \varepsilon \right)^q + \left(\|\phi_B\| - \varepsilon \right)^q \right]^{\frac{1}{q}}.
\]

Since the inequality

\[
\|\phi_{A \cup B}\| \geq \left[\left(\|\phi_A\| - \varepsilon \right)^q + \left(\|\phi_B\| - \varepsilon \right)^q \right]^{\frac{1}{q}}
\]

holds for every \(\varepsilon \in (0, \min\{\|\phi_A\|, \|\phi_B\|\}) \), it will clearly force (10).

To prove the other inequality \(\|\phi_{A \cup B}\| \leq \left[\|\phi_A\|^q + \|\phi_B\|^q \right]^{\frac{1}{q}} \), we must show that

\[
|\phi_{A \cup B}(g)| \leq \left[\|\phi_A\|^q + \|\phi_B\|^q \right]^\frac{1}{q} \cdot \|g\|_p, \quad \forall \ g \in L^p_X(X, A, \mu).
\]

Start with some \(g \in L^p_X(X, A, \mu) \). Using (7), combined with Hölder’s inequality, we have

\[
|\phi_{A \cup B}(g)| \leq |\phi_A(\varkappa_A)| + |\phi_B(\varkappa_B)| \leq \|\phi_A\| \cdot \|g\|_p + \|\phi_B\| \cdot \|g\|_p \leq \left[\|\phi_A\|^q + \|\phi_B\|^q \right]^\frac{1}{q} \cdot \left(\|g\|_p \right)^p \left(\|g\|_p \right)^p \leq \left[\|\phi_A\|^q + \|\phi_B\|^q \right]^\frac{1}{q} \cdot \left(\|g\|_p \right)^p \leq \left(\|g\|_p \right)^p \left[\|\phi_{A \cup B}\|_p \right]^\frac{1}{q} = \left(\|g\|_p \right)^p \left[\|g\|_p \right]^{\frac{1}{q}}.
\]
and then using (12) we immediately get (11).

Theorem 6.2 (Finite approximation). Let \((X, \mathcal{A}, \mu)\) be a measure space, let \(\mathbb{K}\) be either \(\mathbb{R}\) or \(\mathbb{C}\), and let \(p \in [1, \infty)\). For every linear continuous map \(\phi : L^p_{\text{elem}}(X, \mathcal{A}, \mu) \to \mathbb{K}\), one has

\[
\|\phi\| = \sup \{\|\phi_A\| : A \in \mathcal{A}, \mu(A) < \infty\}.
\]

Moreover, if \(p > 1\), one also has

\[
\inf \{\|\phi - \phi_A\| : A \in \mathcal{A}, \mu(A) < \infty\} = 0.
\]

Proof. It is obvious that

\[
\|\phi\| \geq \sup \{\|\phi_A\| : A \in \mathcal{A}, \mu(A) < \infty\}.
\]

To prove the other inequality, we start with some \(\varepsilon > 0\). Since \(L^p_{\text{elem}}(X, \mathcal{A}, \mu)\) is dense in \(L^p(X, \mathcal{A}, \mu)\), there exists \(f \in L^p_{\text{elem}}(X, \mathcal{A}, \mu)\), with \(\|f\|_p \leq 1\), and \(|\phi(f)| \geq \|\phi\| - \varepsilon\). Notice that the fact that \(f \in L^p_{\text{elem}}(X, \mathcal{A}, \mu)\) means that \(f = \lambda_1 \cdot \chi_{A_1} + \cdots + \lambda_n \cdot \chi_{A_n}\), with \(A_k \in \mathcal{A}\) and \(\mu(A_k) < \infty\), \(\forall k = 1, \ldots, n\). In particular, if one considers the integration map \(\int_{X} f \, d\mu \in \mathbb{K}\), with \(\mu(A_k) < \infty\), \(\forall k = 1, \ldots, n\), then \(\phi(f) = \phi(A)\), which gives \(\phi_A(f) = \phi(f)\). Therefore, we get

\[
\|\phi\| - \varepsilon \leq |\phi_A(f)| \leq \|\phi_A\| \cdot \|f\|_p = \|\phi_A\|
\]

thus proving that we have in fact equality in (13).

To prove the equality (??), we use (13) to find, for every integer \(n \geq 1\), some set \(A_n \in \mathcal{A}\), with \(\mu(A_n) < \infty\), such that

\[
\|\phi_{\mathcal{A} \setminus A_n}\| > \|\phi\| - \frac{1}{n}.
\]

Since we clearly have \(\phi_{\mathcal{A} \setminus A_n} = \phi - \phi_{A_n}\), by Lemma 6.2 we get

\[
\|\phi\| = \left[\|\phi_{A_n}\|^q + \|\phi - \phi_{A_n}\|^q \right]^\frac{1}{q},
\]

where \(q = p/(p - 1)\). This yields

\[
\|\phi - \phi_{A_n}\| = \left[\|\phi\|^q - \|\phi_{A_n}\|^q \right]^\frac{1}{q},
\]

and using (15) we get

\[
\|\phi - \phi_{A_n}\| \leq \left[\|\phi\|^q - \left(\|\phi\| - \frac{1}{n} \right)^q \right]^\frac{1}{q},
\]

which clearly forces \(\lim_{n \to \infty} \|\phi - \phi_{A_n}\| = 0\).

Remark 6.2. The equality (??) does not hold for \(p = 1\), the reason being the fact that in this case one only has

\[
\|\phi - \phi_A\| = \|\phi_{\mathcal{A} \setminus A}\|.
\]

For example, suppose one works with a \(\sigma\)-finite measure space \((X, \mathcal{A}, \mu)\), with \(\mu(X) = \infty\), and if one considers the integration map

\[
\phi : L^1_{\text{elem}}(X, \mathcal{A}, \mu) \ni f \mapsto \int_X f \, d\mu \in \mathbb{K},
\]

then it is pretty clear that \(\|\phi_B\| = 1\), \(\forall B \in \mathcal{A}\), with \(\mu(B) > 0\). In particular, we see that for this map one has

\[
\inf \{\|\phi - \phi_A\| : A \in \mathcal{A}, \mu(A) < \infty\} = \inf \{\|\phi_{\mathcal{A} \setminus A}\| : A \in \mathcal{A}, \mu(A) < \infty\} = 1.
\]
Exercise 1. Suppose \((X, \mathcal{A}, \mu)\) is a measure space, and \(p \in [1, \infty)\). Prove that, for every linear continuous map \(\phi : L^p(X, \mathcal{A}, \mu) \to K\), there exists a \(\mu\)-\(\sigma\)-finite set \(A \in \mathcal{A}\), with \(\|\phi_A\| = \|\phi\|\). Moreover, if \(p > 1\), then any set with this property forces the equality \(\phi_A = \phi\).

We are now ready to prove our first duality result. Before we do so, let us recall some notations and results from Section 3.

Notations. Let \((X, \mathcal{A}, \mu)\) be a measure space, let \(K\) be one of the fields \(\mathbb{R}\) or \(\mathbb{C}\), and let \(p, q \in (1, \infty)\) be Hölder conjugate numbers, i.e. \(\frac{1}{p} + \frac{1}{q} = 1\). For any \(f \in L^p(X, \mathcal{A}, \mu)\) we consider the map

\[
\Lambda_f : L^q(X, \mathcal{A}, \mu) \ni g \mapsto \int_X fg \, d\mu \in K.
\]

We know from the results in Section 3 that

- for every \(f \in L^p(X, \mathcal{A}, \mu)\), the map \(\Lambda_f : L^p(X, \mathcal{A}, \mu) \to K\) is linear continuous, and has \(\|\Lambda_f\| = \|f\|_q\).
- the correspondence

\[
\Lambda : L^q(X, \mathcal{A}, \mu) \ni f \mapsto \Lambda_f \in L^p(X, \mathcal{A}, \mu)^*
\]

is linear continuous and isometric.

Theorem 6.3 (Duality Theorem for \(L^p\), \(p \in (1, \infty)\)). With the notations above, the correspondence \((16)\) is an isometric linear isomorphism.

Proof. All we need to prove is the surjectivity of \((16)\). Start with some linear continuous map \(\phi : L^p(X, \mathcal{A}, \mu) \to K\), and let us construct a function \(f \in L^p(X, \mathcal{A}, \mu)\), such that \(\Lambda_f = \phi\). The key step is contained in the following.

Claim 1: For every \(A \in \mathcal{A}\) with \(\mu(A) < \infty\), there exists some \(f \in L^p(X, \mathcal{A}, \mu)\), such that \(\Lambda_f = \phi |_A\).

Indeed, if one considers the linear continuous map \(\phi |_A : L^p(X, \mathcal{A}, \mu) \to K\), then by Theorem 6.1, there exists a function \(f_0 \in L^p(A, \mathcal{A}|_A, \mu)\) with

\[
(\phi |_A)(g) = \int_A f_0 g \, d\mu, \quad \forall g \in L^p(A, \mathcal{A}|_A, \mu).
\]

If we define the function \(f = R_A f_0 \in L^p(X, \mathcal{A}, \mu)\), then we have \(f |_A = f_0\) and \(f = f \sigma_A\), so for every \(g \in L^p(X, \mathcal{A}, \mu)\) we have

\[
\int_X fg \, d\mu = \int_A f_0(g|_A) \, d\mu = (\phi |_A)(g|_A) = \phi_A(g).
\]

Having proven Claim 1, we now use Theorem 6.2 to find a sequence \((A_n)_{n=1}^{\infty} \subset \mathcal{A}\), with \(\mu(A_n) < \infty, \forall n \geq 1\), such that \(\lim_{n \to \infty} \|\phi - \phi_{A_n}\| = 0\). For each \(n \geq 1\) we use Claim 1 to find some \(f_n \in L^p(X, \mathcal{A}, \mu)\) such that \(\Lambda_{f_n} = \phi_{A_n}\), so now we have

\[
\lim_{n \to \infty} \|\phi - \Lambda_{f_n}\| = 0.
\]

Claim 2: The sequence \((f_n)_{n=1}^{\infty} \subset L^p(X, \mathcal{A}, \mu)\) is Cauchy.

Indeed, from \((17)\) it follows that the sequence \((\Lambda_{f_n})_{n=1}^{\infty}\) is Cauchy in the Banach space \(L^p(X, \mathcal{A}, \mu)^*\), i.e.

\[
\lim_{N \to -\infty} \left[\sup \{ \|\Lambda_{f_m} - \Lambda_{f_n}\| : m, n \geq N \} \right] = 0.
\]
Since Λ is linear and isometric, we have $\|\Lambda_{f_m} - \Lambda_{f_n}\| = \|f_m - f_n\|_q$, $\forall m, n \geq 1$, so the above estimate gives
\[
\lim_{N \to \infty} \left[\sup \left\{ \|f_m - f_n\|_q : m, n \geq N \right\} \right] = 0.
\]

Use now the fact that $L^q_{\infty}(X,A,\mu)$ is a Banach space, to conclude that
\[
L^q_{\infty} \lim_{n \to \infty} f_n = f,
\]
for some $f \in L^q_{\infty}(X,A,\mu)$. Since Λ is isometric, we have
\[
\lim_{n \to \infty} \|\Lambda_f - \Lambda_{f_n}\| = 0,
\]
and then (17) forces $\phi = \Lambda_f$. \hfill \box

Before we deal with the duality problem for L^1, we recall some notations and results from Section 5.

Notations. Let (X,A,μ) be a measure space, let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C}. For any $f \in L^\infty_{\mathbb{K}}(X,A,\mu)$ we consider the map
\[
\Lambda_f : L^1_{\mathbb{K}}(X,A,\mu) \ni g \longmapsto \int_X fg \, d\mu \in \mathbb{K}.
\]
We know from the results in Section 5 that

- for every $f \in L^\infty_{\mathbb{K}}(X,A,\mu)$, the map $\Lambda_f : L^1_{\mathbb{K}}(X,A,\mu) \to \mathbb{K}$ is linear continuous, and has $\|\Lambda_f\| = \|f\|_{\infty}^\mathbb{K}.
- the correspondence (18)
\[
\Lambda : L^\infty_{\mathbb{K}}(X,A,\mu) \ni f \longmapsto \Lambda_f \in L^1_{\mathbb{K}}(X,A,\mu)^*
\]
is linear continuous and isometric.

Theorem 6.4 (Duality Theorem for L^1). Use the notations above, and assume there exists $X_0 \in A$ such that

(i) the measure space $(X_0,A\mid_{X_0},\mu)$ is decomposable;

(ii) the measure space $(X \setminus X_0,A\mid_{X \setminus X_0},\mu)$ is degenerate, i.e. $\mu(A) \in \{0, \infty\}$, for all $A \in A$ with $A \subset X \setminus X_0$.

Then the correspondence (18) is an isometric linear isomorphism.

Proof. As before, all we have to show is the surjectivity of the map (20). First of all, since the measure space $(X \setminus X_0,A\mid_{X \setminus X_0},\mu)$ is degenerate, it is clear that the restriction maps

- $L^1_{\mathbb{K}}(X,A,\mu) \ni f \longmapsto f\mid_{X_0} \in L^1_{\mathbb{K}}(X_0,A\mid_{X_0},\mu)$
- $L^\infty_{\mathbb{K}}(X,A,\mu) \ni f \longmapsto f\mid_{X_0} \in L^\infty_{\mathbb{K}}(X_0,A\mid_{X_0},\mu)$

are isometric linear isomorphisms, so we can assume that in fact we have $X_0 = X$. Recall that the decomposability condition means that there exists a collection $\mathcal{F} \subset A$ with

- $\mu(F) < \infty$, $\forall F \in \mathcal{F}$;
- $\bigcup_{F \in \mathcal{F}} F = X$;
- if a set $A \subset X$ has $A \cap F \in A$, $\forall F \in \mathcal{F}$, then $A \in A$;
- for every $A \in A$ with $\mu(A) < \infty$, one has $\mu(A) = \sum_{F \in \mathcal{F}} \mu(A \cap F)$.

To prove the surjectivity of (20) we start with some linear continuous map \(\phi : L^p_K(X, A, \mu) \to \mathbb{K} \), and we wish to find some function \(f \in L^\infty_{\text{loc}}(X, A, \mu) \), with \(\phi = \Lambda_f \). The following first step is proven the exact same way as the first step in the proof of Theorem 6.2.

Claim 1: For every \(A \in A \) with \(\mu(A) < \infty \), there exists \(g \in L^\infty_{\text{loc}}(X, A, \mu) \), such that \(\Lambda_f = \phi \).

To construct the desired function \(f \), we use the above Claim to find, for each \(F \in \mathcal{F} \) a function \(f_F \in L^\infty_{\text{loc}}(X, A, \mu) \), such that \(\Lambda_{f_F} = \phi_F \). Using Lemma 5.1, we can in fact assume that \(f_F \) is in fact bounded, with \(\|f_F\|_{\text{sup}} = \|f_F\|_{\text{loc}}^{\infty} \). Remark that, using the fact that (18) is isometric, it follows that, for every \(F \in \mathcal{F} \), one has the inequality

\[
\|f_F\|_{\text{sup}} = \|\Lambda_{f_F}\| = \|\phi_F\| \leq \|\phi\|.
\]

Use now the patching property (see ???) to produce a measurable function \(f : X \to \mathbb{K} \) such that \(f|_F = f_F \), \(\forall F \in \mathcal{F} \). Obviously \(f \) is bounded, so in particular it belongs to \(L^\infty_{\text{loc}}(X, A, \mu) \), and one has the equalities

\[
(\Lambda f)_F = \Lambda_{f_F} = \phi_F, \quad \forall F \in \mathcal{F}.
\]

Claim 2: For any set \(A \in A \) with \(\mu(A) < \infty \), one has the equality

\[\Lambda_f(\mathcal{A}_A) = \phi(\mathcal{A}_A).\]

To prove this we first observe that, using decomposability, we have

\[
\sum_{F\in\mathcal{F}} \mu(A \cap F) = \mu(A) < \infty,
\]

so in particular the collection \(\mathcal{F}_A = \{F \in A : \mu(A \cap F) > 0\} \) is at most countable. If we list it as a sequence \(\mathcal{F}_A = \{F_1, F_2, \ldots\} \) (finite or infinite) then \(\mu(A) = \sum_n \mu(A \cap F_n) \), and it is pretty clear (use Remark 6.1.B for example) that one has

\[\mathcal{A}_A = L^1 - \sum_n \mathcal{A}_A \cap F_n.\]

(The sum in the right hand side is either an ordinary sum, if \(\mathcal{F}_A \) is finite, or a series, convergent in \(L^1 \), if \(\mathcal{F}_A \) is infinite.) In any event, using the equalities \(\mathcal{A}_A \cap F = 0 \), \(\forall F \in \mathcal{F} \setminus \mathcal{F}_A \), the continuity of both \(\Lambda_f \) and \(\phi \) will give the fact that we have the equalities

\[
\Lambda_f(\mathcal{A}_A) = \sum_{F \in \mathcal{F}} \Lambda_f(\mathcal{A}_A \cap F) \quad \text{and} \quad \phi(\mathcal{A}_A) = \sum_{F \in \mathcal{F}} \phi(\mathcal{A}_A \cap F).
\]

This means that, in order to prove the Claim, all we have to show are the equalities

\[
\Lambda_f(\mathcal{A}_A \cap F) = \phi(\mathcal{A}_A \cap F), \quad \forall F \in \mathcal{F}.
\]

But these equalities immediately follow from (20):

\[
\Lambda_f(\mathcal{A}_A \cap F) = \Lambda_f(\mathcal{A}_A \mathcal{A}_F) = (\Lambda f)_F(\mathcal{A}_A) = \phi_F(\mathcal{A}_A) = \phi(\mathcal{A}_A \cap F).
\]

We now prove the equality \(\Lambda_f = \phi \). Using Claim 2, and linearity, it follows that

\[
(\Lambda f)_A = 0, \quad \forall A \in \mathcal{F}.
\]

Since \(\mathcal{F}_2 = \{A \in A : \mu(A) < \infty\} = L^\infty_{\text{elem},K}(X, A, \mu) \) is dense in \(L^1_{\text{elem},K}(X, A, \mu) \), the continuity of both \(\Lambda_f \) and \(\phi \), combined with (21) will force \(\Lambda_f = \phi \).
Consider the measure space \((X, \mathcal{M}, \mu)\) (on which Theorem 6.4 is true!), and we pick a “small” \(\sigma\)-algebra \(A \subset \mathcal{M}\). If we consider the measure space \((X, \mathcal{A}, \mu|_A)\), then by Exercise 6 in Section 4 we have an inclusion \(L^1_K(X, \mathcal{A}, \mu|_A) \subset L^1_K(X, \mathcal{M}, \mu)\), so if one starts with some \(f_0 \in L^\infty_{K,\text{loc}}(X, \mathcal{M}, \mu)\), we get a linear continuous map \(\phi = \Lambda^M_\mu|_{L^1_K(X, \mathcal{A}, \mu|_A)}\). (We use superscripts to indicate the corresponding measure space.) It may happen that we have no way of representing \(\phi\) as \(\Lambda^A_\mu\) with \(f \in L^\infty_{K,\text{loc}}(X, \mathcal{A}, \mu|_A)\), simply because the only candidate might be \(f = f_0\).

Example 6.1. Let \(X\) be an uncountable set, and let \(\mu : \mathcal{P}(X) \to [0, \infty]\) be the counting measure. For the measure space \((X, \mathcal{P}(X), \mu)\) we have the obvious identification \(L^1_K(X, \mathcal{P}(X), \mu) \simeq \ell^1_K(X)\), with the integration corresponding to the map
\[
\ell^1_K(X) \ni g \mapsto \sum_{x \in X} g(x) \in \mathbb{K}.
\]
Consider the \(\sigma\)-algebra
\[
A = \{ A \subset X : \text{either } A \text{ or } X \setminus A \text{ is countable} \}.
\]
Remark that, although \(A \subsetneq \mathcal{P}(X)\), one has the equality \(\ell^1_K(X, \mathcal{A}, \mu|_A) = \ell^1_K(X)\).
Remark also that both measure spaces \((X, \mathcal{P}(X), \mu)\) and \((X, \mathcal{A}, \mu|_A)\) have the finite subset property, and in fact one has the equivalence
\[
(\mu\text{-l.a.e}) \leftrightarrow (\mu\text{-a.e}) \leftrightarrow (\text{everywhere}).
\]
Let \(B \subset X\) be a set which does not belong to \(A\), and consider the map
\[
\phi : L^1_K(X, \mathcal{A}, \mu) \ni g \mapsto \sum_{x \in B} g(x) \in \mathbb{K}.
\]
We claim that there is no function \(f \in L^\infty_X(X, \mathcal{A}, \mu|_A)\) such that
\[
\phi(g) = \int_X f \, g \, d(\mu|_A), \quad \forall g \in L^1_K(X, \mathcal{A}, \mu|_A).
\]
Indeed, if such a function exists, then if one considers the functions like \(\kappa_\{x\}\), \(x \in X\), which clearly belong to \(L^1_K(X, \mathcal{A}, \mu|_A)\), then we immediately get
\[
f(x) = \phi(\kappa_\{x\}) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B \end{cases}
\]
i.e. \(f = \kappa_B\), which is impossible, since \(B \notin A\).

Exercise 2. Let \((X, \mathcal{A}, \mu)\) be a measure space, and let \(\mathcal{B} \subset \mathcal{A}\) be a \(\sigma\)-algebra. Consider the measure space \((X, \mathcal{B}, \mu|_B)\). Let \(\mathbb{K}\) be either \(\mathbb{R}\) or \(\mathbb{C}\). As seen in Exercise 6 from Section 3, for every \(q \in [1, \infty)\), one has the inclusion
\[
L^p_K(X, \mathcal{B}, \mu|_B) \subset L^p_K(X, \mathcal{A}, \mu).
\]
A. Assume \(1 < q < \infty\), and let \(p = q/(q - 1)\). Prove that for every \(f \in L^p_K(X, \mathcal{A}, \mu)\), there exists a (unique \(\mu\text{-a.e.})\) function \(\tilde{f} \in L^p_K(X, \mathcal{B}, \mu|_B)\) such that
\[
\int_X f \, g \, d\mu = \int_X \tilde{f} \, g \, d\mu, \quad \forall g \in L^p_K(X, \mathcal{B}, \mu|_B).
\]
B. Prove that, if the measure space \((X, \mathcal{B}, \mu|_B)\) is decomposable, then for every \(f \in L^1(X, \mathcal{A}, \mu)\), there exists a (unique \(\mu\)-a.e.) function \(\tilde{f} \in L^1(X, \mathcal{B}, \mu|_B)\) such that
\[
\int_X fg\,d\mu = \int_X \tilde{f}g\,d\mu, \quad \forall g \in L^\infty,loc(X, \mathcal{B}, \mu|_B).
\]
Hints: A. For each \(f \in L^2(X, \mathcal{A}, \mu)\) consider the map
\[
\Phi_f : L^2(X, \mathcal{B}, \mu|_B) \ni g \mapsto \int_X fg\,d\mu \in \mathbb{K},
\]
and use Theorem 6.3. applied to the measure space \((X, \mathcal{B}, \mu|_B)\).
B. Use the Radon-Nikodym Theorem, on the measure space \((X, \mathcal{B}, \mu|_B)\) for the \(\mathbb{K}\)-valued measure \(\nu_f(B) = \int_X f\chi_B\,d\mu, \ B \in \mathcal{B} \).

Comment: Using the notations from the above Exercise, (if \(q = 1\) we also require the extra hypothesis as in part B) the map
\[
E^q_{A|B} : L^q(X, \mathcal{A}, \mu) \ni f \mapsto \tilde{f} \in L^q(X, \mathcal{B}, \mu|_B)
\]
is called the conditional expectation map. This construction is often employed in Probability Theory. In the case \(q = 2\) the map \(E^2_{A|B}\) can also be described as the orthogonal projection of \(L^2(X, \mathcal{A}, \mu)\) onto the closed linear subspace \(L^2(X, \mathcal{B}, \mu|_B)\).

Exercise 3c. Use the notations from Exercise 2. (If \(q = 1\) assume also the same hypothesis as in part B.) Prove that the conditional expectation map
\[
E^q_{A|B} : L^q(X, \mathcal{A}, \mu) \to L^q(X, \mathcal{B}, \mu|_B)
\]
is linear, continuous, and has \(\|E^q_{A|B}\| \leq 1\). Also prove that
(i) \(E^q_{A|B}(f) = f, \forall f \in L^q(X, \mathcal{B}, \mu|_B)\);
(ii) \(E^q_{A|B}(h \cdot f) = h \cdot E^q_{A|B}(f), \forall h \in L^\infty,loc(X, \mathcal{B}, \mu|_B), f \in L^q(X, \mathcal{A}, \mu)\).

Conditional expectations can also be defined on \(L^\infty,loc\).

Exercise 4c. Use the notations from Exercise 2. Prove that, if the measure space \((X, \mathcal{B}, \mu|_B)\) is decomposable, then for every \(f \in L^\infty,loc(X, \mathcal{A}, \mu)\), there exists a (unique \(\mu\)-a.e.) function \(\tilde{f} \in L^\infty,loc(X, \mathcal{B}, \mu|_B)\) such that
\[
\int_X fg\,d\mu = \int_X \tilde{f}g\,d\mu, \quad \forall g \in L^\infty,loc(X, \mathcal{B}, \mu|_B).
\]
Prove that the map
\[
E_{A|B} : L^\infty,loc(X, \mathcal{A}, \mu) \ni f \mapsto \tilde{f} \in L^\infty,loc(X, \mathcal{B}, \mu|_B)
\]
is again linear continuous and contractive. Moreover, it also satifies the properties:
(i) \(E_{A|B}(f) = f, \forall f \in L^\infty,loc(X, \mathcal{B}, \mu|_B)\);
(ii) \(E_{A|B}(h \cdot f) = h \cdot E_{A|B}(f), \forall h \in L^\infty,loc(X, \mathcal{B}, \mu|_B), f \in L^\infty,loc(X, \mathcal{A}, \mu)\).

Hint: For the existence of \(\tilde{f}\) argue as in the hint to Exercise 2, but use Theorem 6.4. instead.