Probability

Days Six–Seven

\(\sigma\)-Rings, \(\sigma\)-Algebras and Monotone Classes

Today we extend several notions introduced in Days One–Two. These extensions are aimed at adding more “flexibility.”

Terminology. Let \(X\) be some non-empty set, and let \(\mathcal{C}\) be a collection of subsets of \(X\). We introduce the following two technical conditions:

(\(\sigma\)) Whenever \((A_n)_{n=1}^\infty\) is a sequence of sets in \(\mathcal{C}\), it follows that the union \(\bigcup_{n=1}^\infty A_n\) again belongs to \(\mathcal{C}\).

(\(\delta\)) Whenever \((A_n)_{n=1}^\infty\) is a sequence of sets in \(\mathcal{C}\), it follows that the intersection \(\bigcap_{n=1}^\infty A_n\) again belongs to \(\mathcal{C}\).

Exercise 1. Let \(X\) be some non-empty set, and let \(\mathcal{C} \subset \mathcal{P}(X)\) be a collection, which is complemented in \(X\), in the sense that

\[
\bullet \quad A \in \mathcal{C} \Rightarrow X \setminus A \in \mathcal{C}.
\]

Prove that \(\mathcal{C}\) has property (\(\sigma\)), if and only if \(\mathcal{C}\) has property (\(\delta\)).

Definition. Let \(X\) be some non-empty set. A ring \(\mathcal{R}\) of sets in \(X\), which has property (\(\sigma\)), is called a \(\sigma\)-ring. An algebra \(\mathcal{A}\) of sets in \(X\), which has property (\(\sigma\)), is called a \(\sigma\)-algebra.

Remark 1. If \(\mathcal{R}\) is a \(\sigma\)-ring, then \(\mathcal{R}\) has property (\(\delta\)). Indeed, if one starts with some sequence \((A_n)_{n=1}^\infty \subset \mathcal{R}\), and if we form the sets \(B_n = A_1 \setminus A_n\), then \(B_n \in \mathcal{R}\), \(\forall n \geq 1\), so the union \(B = \bigcup_{n=1}^\infty B_n\) again belongs to \(\mathcal{R}\). Then \(\mathcal{R}\) will also contain

\[
A_1 \setminus B = A_1 \setminus \left[\bigcap_{n=1}^\infty (A_1 \setminus A_n) \right] = \bigcap_{n=1}^\infty A_n.
\]

Exercise 2. (“Working” definition for \(\sigma\)-rings.) Let \(X\) be some non-empty set, and let \(\mathcal{R}\) be some non-empty collection of subsets of \(X\). Prove that the following are equivalent:

(i) \(\mathcal{R}\) is a \(\sigma\)-ring of sets in \(X\).

(ii) \(\mathcal{R}\) has property (\(\sigma\)) and:

\[
\bullet \quad A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R},
\]

Exercise 3. (“Working” definition for \(\sigma\)-algebras.) Let \(X\) be some non-empty set, and let \(\mathcal{A}\) be some non-empty collection of subsets of \(X\). Prove that the following are equivalent:
(i) \mathcal{A} is a σ-algebra of sets in X.

(ii) \mathcal{A} has property (σ) and is complemented in X.

(iii) \mathcal{A} has property (δ) and is complemented in X.

Fact 1. Given a family $(\mathcal{A}_i)_{i \in I}$ of σ-rings (or σ-algebras) of sets in X, the intersection $\bigcap_{i \in I} \mathcal{A}_i$ is again a σ-ring (or σ-algebra) of sets in X.

Exercise 4. Prove Fact 1.

Using Fact 1, we see that given an arbitrary collection $\mathcal{C} \subset \mathcal{P}(X)$, we can consider the families

$$
\Gamma = \{ \mathcal{R} : \mathcal{R} \text{ σ-ring of sets in } X, \text{ with } \mathcal{R} \supset \mathcal{C} \},
$$

$$
\Theta = \{ \mathcal{A} : \mathcal{A} \text{ σ-algebra of sets in } X, \text{ with } \mathcal{A} \supset \mathcal{C} \},
$$

which are both *non-empty*, since they contain for example $\mathcal{P}(X)$. The intersection

$$
\mathbf{S}(\mathcal{C}) = \bigcap_{\mathcal{R} \in \Gamma} \mathcal{R},
$$

which is a σ-ring, is referred to as the *σ-ring on X generated by \mathcal{C}*. The intersection

$$
\mathbf{\Sigma}(\mathcal{C}) = \bigcap_{\mathcal{A} \in \Theta} \mathcal{A},
$$

which is a σ-algebra, is referred to as the *algebra on X generated by \mathcal{C}*. The features of these collections are as follows.

Fact 2. Let \mathcal{C} be some non-empty collection of subsets of X.

(i) $\mathbf{S}(\mathcal{C})$ is the smallest σ-ring that contains \mathcal{C}, that is, whenever \mathcal{R} is a σ-ring that contains \mathcal{C}, it follows that \mathcal{R} also contains $\mathbf{S}(\mathcal{C})$.

(ii) $\mathbf{\Sigma}(\mathcal{C})$ is the smallest σ-algebra that contains \mathcal{C}, that is, whenever \mathcal{A} is a σ-algebra that contains \mathcal{C}, it follows that \mathcal{A} also contains $\mathbf{\Sigma}(\mathcal{C})$.

Exercise 5. Prove Fact 2.

Unfortunately, there is no easy way of constructing the σ-ring (or σ-algebra) generated by an arbitrary collection. One way to circumvent this problem is by introducing the following two refined versions of properties (σ) and (δ), which refer to a collection \mathcal{C} of subsets of X:

(σ_1) Whenever $(\mathcal{A}_n)_{n=1}^\infty$ is a sequence of sets in \mathcal{C}, which is increasing, that is $A_1 \subset A_2 \subset \ldots$, it follows that the union $\bigcup_{n=1}^\infty A_n$ also belongs to \mathcal{C}.

2
Whenever \((A_n)_{n=1}^\infty\) is a sequence of sets in \(C\), which is decreasing, that is \(A_1 \supset A_2 \supset \ldots\), it follows that the intersection \(\bigcap_{n=1}^\infty A_n\) also belongs to \(C\).

We also introduce a third technical condition, which is a refinement of property \((\sigma)\)

\((\sigma_0)\) Whenever \((A_n)_{n=1}^\infty\) is a sequence of disjoint sets in \(C\), it follows that the union \(\bigcup_{n=1}^\infty A_n\) again belongs to \(C\).

With this terminology one has the following result.

Proposition 1. For a ring \(R\) of sets in \(X\), the following are equivalent:

(i) \(R\) is a \(\sigma\)-ring;

(ii) \(R\) has property \((\sigma_0)\).

(iii) \(R\) has property \((\sigma_\uparrow)\).

Proof. The implication \((i) \Rightarrow (ii)\) is immediate, since one clearly has the implication \((\sigma) \Rightarrow (\sigma_0)\).

To prove the implication \((\sigma_0) \Rightarrow (\sigma_\uparrow)\), we assume condition \((\sigma_0)\), we start with some increasing sequence \(A_1 \subset A_2 \subset \ldots\) in \(R\), and we show that the union \(A = \bigcup_{n=1}^\infty A_n\) again belongs to \(R\). To get this fact, using \((\sigma_0)\), all we need is to write \(A\) as a union of a sequence of disjoint sets in \(R\). If we define the sets \(D_1 = A_1\) and

\[
D_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1}), \quad \forall n \geq 2,
\]

then on the one hand all the \(D\)'s are in \(R\) (which is a ring). On the other hand it is obvious that all the \(D\)'s are disjoint, and \(A = \bigcup_{n=1}^\infty D_n\).

To prove the implication \((iii) \Rightarrow (i)\), we assume \(R\) has property \((\sigma_\uparrow)\), we fix some arbitrary sequence \((A_n)_{n=1}^\infty\) in \(R\), and we show that the union \(A = \bigcup_{n=1}^\infty A_n\) again belongs to \(R\). Using the fact that \(R\) is a ring, it follows that for every \(n \geq 1\), the finite union \(B_n = \bigcup_{k=1}^n A_k\) belongs to \(R\). Since we have \(B_1 \subset B_2 \subset \ldots\), with \(\bigcup_{n=1}^\infty B_n = A\), by property \((\sigma_\uparrow)\), it follows that \(A\) indeed belongs to \(R\). \(\square\)

Definition. A collection \(M\) of subsets in \(X\) is called a **monotone class**, if it has both properties \((\sigma_\uparrow)\) and \((\delta_\downarrow)\).

With this terminology, Proposition 1 has the following consequence:

Corollary 1. For a ring \(R\) of sets in \(X\), the following are equivalent:

(i) \(R\) is a \(\sigma\)-ring;

(ii) \(R\) is a monotone class. \(\square\)
Fact 3. Given a family \(\{M_i\}_{i \in I} \) of monotone classes in \(X \), the intersection \(\bigcap_{i \in I} M_i \) is again a monotone class in \(X \).

Using Fact 3, we see that given an arbitrary collection \(C \subseteq \mathcal{P}(X) \), we can consider the family
\[
M = \{ M : M \text{ monotone class in } X, \text{ with } M \supset C \},
\]
which is non-empty, since it contains for example \(\mathcal{P}(X) \). The intersection
\[
M(C) = \bigcap_{M \in M} M,
\]
which is a monotone class, is referred to as the monotone class in \(X \) generated by \(C \). The main feature is follows.

Fact 4. Let \(C \) be a collection of subsets in \(X \). The collection \(M(C) \) is the smallest monotone class in \(X \) that contains \(C \), that is, whenever \(M \) is a monotone class in \(X \) that contains \(C \), it follows that \(M \) also contains \(M(C) \).

Using this terminology, has the following important result.

Monotone Class Theorem. Let \(C \) be a collection of sets in \(X \), and let \(R(C) \) and \(A(C) \) be the ring and algebra generated by \(C \). The \(\sigma \)-ring \(S(C) \) and the \(\sigma \)-algebra \(\Sigma(C) \) generated by \(C \), are given as: \(S(C) = M(R(C)) \) and \(\Sigma(C) = M(A(C)) \).

Proof. Let us first observe that since \(S(C) \) is a ring that contains \(C \), it follows that \(S(C) \) contains the ring \(R(C) \) generated by \(C \). Secondly, since \(S(C) \) is also a monotone class, which contains \(R(C) \), it follows that \(S(C) \) contains the monotone class generated by \(R(C) \), that is, one has the inclusion
\[
S(C) \supset M(R(C)).
\]
To prove the other inclusion, since we clearly have the inclusion \(M(R(C)) \supset C \), we see that all we need to show is the fact that \(M(R(C)) \) is a \(\sigma \)-ring. Since \(M(R(C)) \) is a monotone class, by Proposition 1, it suffices to show that \(M(R(C)) \) is just a ring. Denote for simplicity \(R(C) \) by \(R \), so what we need to prove (see the “working definition” from Days One–Two) is the fact that, for any two sets \(A, B \in M(R) \), the sets \(A \setminus B \) and \(A \cup B \) again belong to \(M(R) \). We analyze first the following
Particular Case: Assume $A \in \mathcal{R}$.

To prove that $A \setminus B, A \cup B \in M(\mathcal{R}), \forall B \in M(\mathcal{R})$, we argue indirectly, as follows. We fix $A \in \mathcal{R}$, and we define the collection

$$\mathcal{B} = \{ B \subset X : A \setminus B, A \cup B \in M(\mathcal{R}) \},$$

so that we need to show the inclusion

$$M(\mathcal{R}) \subset \mathcal{B},$$

and we prove this inclusion by showing that \mathcal{B} is a monotone class, which contains \mathcal{R}. The fact that \mathcal{B} contains \mathcal{R} is trivial, since one has the implications

$$A, B \in \mathcal{R} \Rightarrow A \setminus B, A \cup B \in \mathcal{R}.$$

To show that \mathcal{B} is a monotone class, we must check properties $(\sigma \uparrow)$ and $(\delta \downarrow)$.

To check property $(\sigma \uparrow)$ we start with an increasing sequence $B_1 \subset B_2 \subset \ldots$ in \mathcal{B} and we show that the union $B = \bigcup_{n=1}^{\infty} B_n$ again belongs to \mathcal{B}. This is however clear, since one has

- $A \setminus B = \bigcap_{n=1}^{\infty} (A \setminus B_n)$, with $(A \setminus B_n)_{n=1}^{\infty}$ a decreasing sequence in the monotone class $M(\mathcal{R})$,
- $A \cup B = \bigcup_{n=1}^{\infty} (A \cup B_n)$, with $(A \cup B_n)_{n=1}^{\infty}$ an increasing sequence in the monotone class $M(\mathcal{R})$,

so $A \setminus B$ and $A \cup B$ both belong to $M(\mathcal{R})$.

To check property $(\delta \downarrow)$ we start with a decreasing sequence $B_1 \supset B_2 \supset \ldots$ in \mathcal{B} and we show that the intersection $B = \bigcap_{n=1}^{\infty} B_n$ again belongs to \mathcal{B}. This is however clear, since one has

- $A \setminus B = \bigcup_{n=1}^{\infty} (A \setminus B_n)$, with $(A \setminus B_n)_{n=1}^{\infty}$ an increasing sequence in the monotone class $M(\mathcal{R})$,
- $A \cup B = \bigcap_{n=1}^{\infty} (A \cup B_n)$, with $(A \cup B_n)_{n=1}^{\infty}$ a decreasing sequence in the monotone class $M(\mathcal{R})$,

so $A \setminus B$ and $A \cup B$ both belong to $M(\mathcal{R})$.

Having proven the particular case, we proceed with the general case. Fix $B \in M(\mathcal{R})$ and let us show that

$$A \setminus B, A \cup B \in M(\mathcal{R}), \forall A \in M(\mathcal{R}).$$

We argue again indirectly, by defining

$$\mathcal{A} = \{ A \subset X : A \setminus B, A \cup B \in M(\mathcal{R}) \},$$

so that we need to show that \mathcal{A} is a monotone class, which contains \mathcal{R}. The fact that \mathcal{A} contains \mathcal{R} follows from the particular case above. The fact that \mathcal{A} is a monotone class is proven exactly as above.
The other equality $\Sigma(\mathcal{C}) = M(A(\mathcal{C}))$ is immediate. \qed

The following "estimate" result can often be employed to test whether a set does not belong to the σ-ring generated by a collection.

Proposition 2. Let \mathcal{C} be a collection of sets in X. If a set A belongs to the σ-ring $S(\mathcal{C})$ generated by \mathcal{C}, then there exists a sequence $(B_n)_{n=1}^{\infty} \subset \mathcal{C}$, such that $A \subset \bigcup_{n=1}^{\infty} B_n$.

Proof. Define the collection

$$U = \{ A \subset X : \text{there exists } (B_n)_{n=1}^{\infty} \subset \mathcal{C}, \text{ such that } A \subset \bigcup_{n=1}^{\infty} B_n \},$$

so that what we need to prove is the inclusion

$$U \supset S(\mathcal{C}).$$

We prove this inclusion by shown that U is a σ-ring, which contains \mathcal{C}. The inclusion $U \supset \mathcal{C}$ is trivial. To check that U is a σ-ring, we must show that

- (σ) whenever $(A_n)_{n=1}^{\infty}$ is a sequence in U, it follows that the union $\bigcup_{n=1}^{\infty} A_n$ again belongs to U;
- $(\ast) A, B \in U \Rightarrow A \setminus B \in U$.

Property (\ast) is trivial, since whenever A belongs to U, it follows that U contains all subsets of A. Property (σ) is also pretty clear, since if one takes for each $n \in \mathbb{N}$ a countable collection in \mathcal{C} whose union covers A_n, then putting all these collections together yields another countable collection in \mathcal{C} whose union covers $\bigcup_{n=1}^{\infty} A_n$. \qed

Exercise 8. Prove that a finite collection \mathcal{C} of subsets of X is always a monotone class.

Exercise 9. Prove that a finite ring (or algebra) in X is a σ-ring (or σ-algebra).