Locally Convex Vector Spaces I:

Basic Local Theory

Notes from the Functional Analysis Course (Fall 07 - Spring 08)

Convention. Throughout this note \mathbb{K} will be one of the fields \mathbb{R} or \mathbb{C}, and all vector spaces are over \mathbb{K}.

Definition. A *locally convex vector space* is a pair (X, \mathcal{T}) consisting of a vector space X and linear topology \mathcal{T} on X, which is *locally convex*, in the sense that:

\[\text{(lc) every } x \in X \text{ possesses a fundamental system of convex neighborhoods.} \]

A *locally convex topological vector space* is a locally convex vector space, whose topology is Hausdorff. Since convexity is translation invariant, for a linear topology \mathcal{T}, the local convexity condition (lc) needs only to be verified at $x = 0$.

The following result is a locally convex analogue of Proposition 2.B from TVS I.

Proposition 1. In a locally convex space X there exists a basic neighborhood system for 0, which consists of balanced open convex sets.

Proof. What we need to prove is that:

\[(*) \text{ for every neighborhood } N \text{ of } 0, \text{ there exists a balanced open convex set } A \subset N. \]

First of all, by definition, there exists a convex neighborhood V of 0, such that $V \subset N$. Secondly, by Proposition 2.B from TVS I, there exists some open balanced set $B \subset V$. Now we are done, by taking $A = \text{conv}(B)$. (By CW I, A is balanced open convex. Since V is convex and contains B, it will also contain A.)

The next result is a locally convex analogue of the Corollary to Theorem 1 from TVS I. It should be noted, however, that the hypotheses are somehow “more economical” (the collection \mathcal{C} could be, for instance, *finite*), and the conclusion is slightly weaker.

Theorem 1. Suppose X is a vector space and \mathcal{C} is a collection of balanced\(^1\) absorbing convex sets. Then there exists a unique locally convex linear topology \mathcal{T} on X, such that the collection

\[\mathcal{U} = \{ \varepsilon C : C \in \mathcal{C}, \varepsilon > 0 \} \]

constitutes a fundamental system of \mathcal{T}-neighborhoods of 0.

Proof. Define the collection \mathcal{V} consisting of *finite intersections of sets* in \mathcal{U}. We wish to apply Corollary for Theorem 1 from TVS I, so we need to check the following:

\[\text{The fact that } C \text{ is balanced forces } C \ni 0. \]

\(^1\) The fact that C is balanced forces $C \ni 0$.
(i) \(\mathfrak{V} \) is a filter, and all sets in \(\mathfrak{V} \) contain 0;

(ii) every \(\mathcal{V} \in \mathfrak{V} \) is absorbing;

(iii) for every \(\mathcal{V} \in \mathfrak{V} \), there exists \(\mathcal{W} \in \mathfrak{V} \), such that \(\mathcal{W} + \mathcal{W} \subset \mathcal{V} \);

(iv) every \(\mathcal{V} \in \mathfrak{V} \) is balanced.

Condition (i) is trivial, since all sets in \(\mathfrak{U} \) contain 0.

Condition (iv) is also clear, since every set in \(\mathfrak{U} \) is balanced, and (arbitrary) intersections of balanced sets are balanced.

Condition (ii) follows from Exercise 2 in CW II, since all sets in \(\mathfrak{U} \) are convex and absorbing.

To check condition (iii), start with some \(\mathcal{V} \in \mathfrak{V} \), so there exists \(C_1, \ldots, C_n \in \mathfrak{C} \) and \(\varepsilon_1, \ldots, \varepsilon_n > 0 \), such that

\[
V = (\varepsilon_1 C_1) \cap \ldots \cap (\varepsilon_n C_n).
\]

Consider then the set

\[
W = (\frac{\varepsilon_1}{2} C_1) \cap \ldots \cap (\frac{\varepsilon_n}{2} C_n),
\]

which again belongs to \(\mathfrak{V} \). Obviously \(2W \subset V \), and since \(W \) is convex, we also have \(2W = W + W \), so we are done.

Having checked the above conditions, we invoke the above mentioned result, to conclude that there exists a unique linear topology \(\mathfrak{T} \) that has \(\mathfrak{V} \) as a basic system of neighborhoods for 0. By construction, \(\mathfrak{T} \) is also the unique linear topology which has \(\mathfrak{U} \) as a fundamental system of neighborhoods for 0. Finally, since all sets in \(\mathfrak{V} \) are convex, it follows that \(\mathfrak{T} \) is indeed locally convex.

Remark 1. With \(\mathfrak{C} \) and \(\mathfrak{T} \) as in Theorem 1, the following are equivalent:

(i) \(\mathfrak{T} \) is Hausdorff;

(ii) \(\bigcap_{\varepsilon \in \mathcal{C}} (\varepsilon C) = \{0\} \).

This is quite clear since, using the notations from the proof, condition (ii) is equivalent to the condition \(\bigcap_{\mathcal{V} \in \mathfrak{V}} \mathcal{V} = \{0\} \), which in turn is (see Theorem 1 in TVS I) equivalent to (i).

Exercise 1. Suppose that \(\mathcal{X} \) is locally convex. Prove that the collection of all closed, convex, balanced neighborhoods of 0, constitutes a basis system of neighborhoods of 0. That is, for every neighborhood \(\mathcal{V} \) of 0, there exists a closed, convex, balanced neighborhood \(\mathcal{W} \) of 0, such that \(\mathcal{W} \subset \mathcal{V} \).

Exercises 2-4. Suppose \(\mathcal{X} \) is an infinite dimensional vector space.

2. Let \(\mathfrak{C} \) be the collection of all absorbing balanced convex subsets of \(\mathcal{X} \), and let \(\mathfrak{T} \) be the corresponding locally convex linear topology described by Theorem 1. Prove that:

(i) \(\mathfrak{T} \) is Hausdorff;

(ii) if \(\mathcal{Y} \) is a locally convex vector space, then all linear maps \(T : \mathcal{X} \to \mathcal{Y} \) are \(\mathcal{T} \)-continuous;

(iii) all linear subspaces are \(\mathcal{T} \)-closed;

(iv) \(\mathcal{T} \) is the strongest locally convex linear topology on \(\mathcal{X} \).

3. Consider the algebraic dual of \(\mathcal{X} \), i.e. the space
\[
\mathcal{X}' = \{ \phi : \mathcal{X} \to \mathbb{K} : \phi \text{ linear} \},
\]
and define, for \(\phi \in \mathcal{C} \), the set \(\mathcal{C}_\phi = \{ x \in \mathcal{X} : |\phi(x)| < 1 \} \). Let \(\mathcal{C}' = \{ \mathcal{C}_\phi : \phi \in \mathcal{X}' \} \), and let \(\mathcal{T}' \) be the corresponding locally convex linear topology described by Theorem 1. Prove that:

(i) \(\mathcal{T}' \) is Hausdorff;

(ii) all maps \(\phi \in \mathcal{X}' \) are \(\mathcal{T}' \)-continuous;

(iii) all linear subspaces are \(\mathcal{T}' \)-closed.

4. Show that the topology \(\mathcal{T}' \) is strictly weaker than \(\mathcal{T} \), i.e. there exist \(\mathcal{T} \)-open sets which are not \(\mathcal{T}' \)-open. (Hint: Every \(\mathcal{T}' \)-neighborhood contains an infinite dimensional linear subspace. There are, however, \(\mathcal{T} \)-neighborhoods of 0 without this property.)

Exercises 5-6 Let \(0 < p < 1 \). We denote by \(D_p \) the metric on \(\ell^p \), defined (see TVS I) by
\[
D_p(x, y) = \sum_{n=1}^\infty |x_n - y_n|^p, \quad \forall x = (x_n), y = (y_n) \in \ell^p.
\]
For every \(\rho > 0 \) we define the ball
\[
\mathcal{B}_\rho = \{ x \in \ell^p : D_p(x, 0) < \rho \}.
\]

5. Show that: \(\sup \{ D_p(x, 0) : x \in \text{conv} (\mathcal{B}_\rho) \} = \infty, \forall \rho > 0 \).

6. Use the above Exercise to prove that the metric topology on \(\ell^p \) is not locally convex.