Solution for section 5.1, B1. Multiples of 2 in columns 2, 4, and 6; multiples of 3 in columns 3 and 6; multiples of diagonals moving down from right to left; multiples of 7 on the diagonals moving down from left to right.

Solution for section 5.1, B4gi.

(g) First notice that we should write 6000 in terms of its prime factors, that is, \(6000 = 2^4 \cdot 3 \cdot 5^3 \). Then

\[
\begin{align*}
\frac{6000}{(2^{21} \times 3^{17} \times 5^{39} \times 29^{37})} & = \frac{(2^4 \times 3 \times 5^3)}{(2^{21} \times 3^{17} \times 5^{39} \times 29^{37})}.
\end{align*}
\]

Now, the above statement is true because

\[
\begin{align*}
(2^4 \times 3 \times 5^3) & \times (2^{17} \times 3^{16} \times 5^{86} \times 29^{37}) = (2^{21} \times 3^{17} \times 5^{39} \times 29^{37}).
\end{align*}
\]

(i) As in part (g), this is true because

\[
\begin{align*}
(p^3 q^3 r) \cdot (p^2 q^6 r^6 s^2 t^{27}) = p^5 q^9 r^7 s^2 t^{27}.
\end{align*}
\]

Solution for section 5.1, B14. Assume \(9 \mid (a + b + c + d) \)

Let \(r = abcd = a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d \)

represent any four digit number. Then we rewrite \(r \) as

\[
\begin{align*}
r & = a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d \\
& = a(999 + 1) + b(99 + 1) + c(9 + 1) + d \\
& = 999a + 99b + 9c + (a + b + c + d) \\
& = 9(111a + 11b + c) + (a + b + c + d).
\end{align*}
\]

Now, since \(9 \mid (a + b + c + d) \) and \(9 \mid (9(111a + 11b + c)) \), then 9 must divide

\[
r = 9(111a + 11b + c) + (a + b + c + d),
\]

which completes the proof.

Solution for section 5.1, B34. This is true and can be proved using the divisibility test by 3.

Solution for section 5.2, B3. The \(\text{LCM}(12, 18) \) is larger. Keep in mind that the largest the \(\text{GCF}(12, 18) \) could possibly be is 12 and the smallest the \(\text{LCM}(12, 18) \) could possibly be is 18.

Solution for section 5.2, B14bc. This is an application of the counting factors theorem on page 198.

(b) The only numbers that have exactly 3 divisors are numbers that are prime numbers squared, that is, \(p^2 \) where \(p \) is a prime.

(c) The are two types of numbers that have 4 divisors. Numbers of the form \(p \cdot q \), where \(p \) and \(q \) are prime, or \(p^3 \).

Solution for section 5.2, B16. The \(\text{GCF}(x^2, y^2) = 1 \). The prime factorizations of \(x \) and \(y \) share no prime factors because \(\text{GCF}(x, y) = 1 \). This means that numbers \(x^2 \) and \(y^2 \) also share no prime factors, since the same primes occur in \(x^2 \) and \(y^2 \) as in \(x \) and \(y \) but twice as often.

Solution for section 5.2, B23. The days the three cycles coincide are multiples of the \(\text{LCM}(23, 28, 33) = 21252 \). This means that the cycles occur in the same day every 21252 days.

Solution for section 6.1, B1.

(a) \(\frac{5}{8} \) \hspace{1cm} (b) \(\frac{3}{10} \) \hspace{1cm} (c) \(\frac{4}{6} \) \hspace{1cm} (d) \(\frac{9}{4} \)

\[\text{Date: Spring 2004.} \]
Solution for section 6.1, B2.
(a) One example of many possible answers {△△△△ □□□□}.
(b)

(c)

Solution for section 6.1, B4.
(a) False, since not every month has 30 days.
(b) True, since every week has 7 days.
(c) False, since not all months are the same size.

Solution for section 6.1, B13. Both Frank and Dave are right. Dave ate 3 more pieces than Frank. Now, 3 out of 12 is 1/4 while 3 out of 15 is 1/5. This means that when Dave said, ”I ate 1/4 more,” he meant out of 12 and when Frank said, “I ate 1/5 less,” he meant out of 15.

Solution for section 6.1, B17. There are infinitely many fractions less than \(\frac{1}{12} \). For example,
\[
\frac{1}{12} > \frac{1}{13} > \frac{1}{14} > \frac{1}{15} \ldots > 0,
\]
which implies that there is no “smallest” fraction greater than 0.

Solution for section 6.1, B18. The size of the unit different so a comparison cannot be made.

Solution for section 6.1, B20. A proper fraction means that the numerator is less than the denominator. Then if you add the same number to both the numerator and denominator to a proper fraction, you will get a number greater than your original fraction. For example,
\[
\frac{3}{5} < \frac{6}{8}.
\]