Conformal dimension of self-affine sets.

Hrant Hakobyan

U. of Toronto

AMS Sectional Meeting, Wesleyan University
October 10, 2008
Outline

Preliminaries
definitions
Hausdorff dimension can increase
Hausdorff dimension can’t decrease

Results
Theorem A. conformal dimension of self-affine sets
Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
Step 1: definitions of μ, \mathcal{E} and \mathcal{L}.
Step 2: subsets of conformal dimension 1
Step 3: modulus is positive
Outline

Preliminaries
definitions
Hausdorff dimension can increase
Hausdorff dimension can’t decrease

Results
Theorem A. conformal dimension of self-affine sets
Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
Step 1: definitions of μ, \mathcal{E} and \mathcal{L}.
Step 2: subsets of conformal dimension 1
Step 3: modulus is positive
Definitions

- Let $F : X \to Y$ be an embedding of a metric space X into Y. F is η-quasisymmetric if for every triple of distinct points $x, y, z \in X$ we have
 $$\frac{|fx - fy|}{|fx - fz|} \leq \eta \left(\frac{|x - y|}{|x - z|} \right),$$
 (Here $\eta : [0, \infty) \to [0, \infty)$ is any homeomorphism).
Definitions

- Let $F : X \to Y$ be an embedding of a metric space X into Y. F is \textit{\(\eta\)-quasisymmetric} if for every triple of distinct points $x, y, z \in X$ we have
 \[
 \frac{|fx - fy|}{|fx - fz|} \leq \eta \left(\frac{|x - y|}{|x - z|} \right),
 \]
 (Here $\eta : [0, \infty) \to [0, \infty)$ is any homeomorphism).

- \textit{Conformal gauge} of X is
 \[
 \mathcal{X} = \{ F(X) : F \in QS(X) \},
 \]
 where $QS(X)$ be the collection of all qs maps defined on X.
Definitions

- Let $F : X \to Y$ be an embedding of a metric space X into Y. F is η-quasisymmetric if for every triple of distinct points $x, y, z \in X$ we have
 \[
 \frac{|fx - fy|}{|fx - fz|} \leq \eta \left(\frac{|x - y|}{|x - z|} \right),
 \]
 (Here $\eta : [0, \infty) \to [0, \infty)$ is any homeomorphism).

- **Conformal gauge** of X is
 \[
 \mathcal{X} = \{ F(X) : F \in QS(X) \},
 \]
 where $QS(X)$ be the collection of all qs maps defined on X.

- **Conformal dimension** of X (or \mathcal{X}) is
 \[
 C \dim X = \inf_{Y \in \mathcal{X}} \dim_H Y.
 \]
Outline

Preliminaries
- definitions

 Hausdorff dimension can increase
 Hausdorff dimension can’t decrease

Results
- Theorem A. conformal dimension of self-affine sets
- Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
- Step 1: definitions of μ, E and L.
- Step 2: subsets of conformal dimension 1
- Step 3: modulus is positive
Hausdorff dimension can increase

- In general $\dim_H F(X) \neq \dim_H X$ for $F \in QS(X)$.
Hausdorff dimension can increase

- In general \(\dim_H F(X) \neq \dim_H X \) for \(F \in QS(X) \).
- The snowflake map

\[
id : (X, |x - y|) \to (X, |x - y|^{\varepsilon}),
\]

is quasisymmetric for every \(\varepsilon \in (0, 1) \) but changes \(\dim_H X \) to \(\frac{1}{\varepsilon} \dim_H X \).
Hausdorff dimension can increase

- In general $\dim_H F(X) \neq \dim_H X$ for $F \in QS(X)$.
- The snowflake map
 \[id : (X, |x - y|) \rightarrow (X, |x - y|^{\varepsilon}), \]
 is quasisymmetric for every $\varepsilon \in (0, 1)$ but changes $\dim_H X$ to $\frac{1}{\varepsilon} \dim_H X$.
- In particular for every X with $\dim_H X > 0$ we have
 \[\sup_{Y \in X} \dim_H Y = \infty. \]
Outline

Preliminaries
definitions
Hausdorff dimension can increase
Hausdorff dimension can’t decrease

Results
Theorem A. conformal dimension of self-affine sets
Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
Step 1: definitions of μ, E and L.
Step 2: subsets of conformal dimension 1
Step 3: modulus is positive
History

- Recall, $C \dim X = \inf_{Y \in X} \dim_H Y$.

- Let $|z_1 - z_2|_{1/2} = |x_1 - x_2| + |y_1 - y_2|_{1/2}$. The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and $C \dim (\mathbb{R}^2, |z_1 - z_2|_{1/2}) = 3$.

- (Tyson, Bishop-Tyson) For every $\alpha \geq 1$ there is a space X (could be a Cantor set) such that $C \dim X = \dim_H X = \alpha$.

- (Kovalev) If $\dim_H E < 1$ then $C \dim X = 0$.

- (H.) There are sets of length 0 and conformal dimension 1.

- What is the conformal dimension of the standard Sierpinski carpet?
History

- Recall, $C \dim X = \inf_{Y \in X} \dim_H Y$.
- $C \dim \mathbb{R}^n = n$
History

- Recall, $C \dim X = \inf_{Y \in X} \dim_H Y$.
- $C \dim \mathbb{R}^n = n$
- Let $|z_1 - z_2|_{1/2} = |x_1 - x_2| + |y_1 - y_2|^{1/2}$.
The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and

$$C \dim(\mathbb{R}^2, |z_1 - z_2|_{1/2}) = 3.$$
History

- Recall, $C\dim X = \inf_{Y \in X} \dim_H Y$.
- $C\dim \mathbb{R}^n = n$
- Let $|z_1 - z_2|_{1/2} = |x_1 - x_2| + |y_1 - y_2|^{1/2}$. The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and $C\dim(\mathbb{R}^2, |z_1 - z_2|_{1/2}) = 3$.
- (Tyson, Bishop-Tyson) For every $\alpha \geq 1$ there is a space X (could be a Cantor set) such that $C\dim X = \dim_H X = \alpha$.

Conformal Dimension of Self-Affine Sets

Hrant Hakobyan

Conformal Dimension of Self-Affine Sets
History

- Recall, $C \dim X = \inf_{Y \in X} \dim_H Y$.
- $C \dim \mathbb{R}^n = n$
- Let $|z_1 - z_2|_{1/2} = |x_1 - x_2| + |y_1 - y_2|^{1/2}$. The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and

 $$C \dim (\mathbb{R}^2, |z_1 - z_2|_{1/2}) = 3.$$

- (Tyson, Bishop-Tyson) For every $\alpha \geq 1$ there is a space X (could be a Cantor set) such that

 $$C \dim X = \dim_H X = \alpha.$$

- (Kovalev) If $\dim_H E < 1$ then $C \dim X = 0$.

Preliminaries

Results

Sketch of the proof of Thm. A

Definitions

Hausdorff dimension can increase

Hausdorff dimension can’t decrease
History

- Recall, $C \dim X = \inf_{Y \subseteq X} \dim_H Y$.
- $C \dim \mathbb{R}^n = n$
- Let $|z_1 - z_2|^{1/2} = |x_1 - x_2| + |y_1 - y_2|^{1/2}$. The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and

 \[C \dim (\mathbb{R}^2, |z_1 - z_2|^{1/2}) = 3. \]

- (Tyson, Bishop-Tyson) For every $\alpha \geq 1$ there is a space X (could be a Cantor set) such that

 \[C \dim X = \dim_H X = \alpha. \]

- (Kovalev) If $\dim_H E < 1$ then $C \dim X = 0$.
- (H.) There are sets of length 0 and conformal dimension 1.
History

- Recall, $C \dim X = \inf_{Y \in X} \dim_H Y$.
- $C \dim \mathbb{R}^n = n$
- Let $|z_1 - z_2|_{1/2} = |x_1 - x_2| + |y_1 - y_2|^{1/2}$.
 The Hausdorff dimension of \mathbb{R}^2 with this metric is 3 and
 $$C \dim(\mathbb{R}^2, |z_1 - z_2|_{1/2}) = 3.$$
- (Tyson, Bishop-Tyson) For every $\alpha \geq 1$ there is a space X (could be a Cantor set) such that
 $$C \dim X = \dim_H X = \alpha.$$
- (Kovalev) If $\dim_H E < 1$ then $C \dim X = 0$.
- (H.) There are sets of length 0 and conformal dimension 1.
- What is the conformal dimension of the standard Sierpinski carpet?
Outline

Preliminaries
- definitions
 Hausdorff dimension can increase
 Hausdorff dimension can’t decrease

Results
- Theorem A. conformal dimension of self-affine sets
- Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
- Step 1: definitions of μ, \mathcal{E} and \mathcal{L}.
- Step 2: subsets of conformal dimension 1
- Step 3: modulus is positive
Conformal dimension of self affine sets

- Let $m, n \in \mathbb{N}$ and $m < n$. Divide the unit square into n equal rows and m equal columns and consider a McMullen carpet X.
Conformal dimension of self affine sets

• Let $m, n \in \mathbb{N}$ and $m < n$. Divide the unit square into n equal rows and m equal columns and consider a McMullen carpet X.

Theorem (Binder, Hak.’08)

Let X be a self-affine McMullen carpet. Then

$$C \dim X \geq 1 + \frac{1}{m} \sum_{j=1}^{m} \log_n r(j),$$

where $r(j)$ is the number of selected rectangles in the j-th column. The second term on the right is the dimension of almost all vertical cross-sections of X.
Conformal dimension of self affine sets

- Let $m, n \in \mathbb{N}$ and $m < n$. Divide the unit square into n equal rows and m equal columns and consider a McMullen carpet X.

Theorem (Binder, Hak.’08)

Let X be a self-affine McMullen carpet. Then

$$\mathcal{C} \dim X \geq 1 + \frac{1}{m} \sum_{j=1}^{m} \log_{n} r(j),$$

where $r(j)$ is the number of selected rectangles in the j-th column. The second term on the right is the dimension of almost all vertical cross-sections of X.

- Proof uses the following theorem . . .
Outline

Preliminaries
- definitions
- Hausdorff dimension can increase
- Hausdorff dimension can’t decrease

Results
- Theorem A. conformal dimension of self-affine sets
- Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
- Step 1: definitions of μ, \mathcal{E} and \mathcal{L}.
- Step 2: subsets of conformal dimension 1
- Step 3: modulus is positive
Theorem (Hak.’08)

Suppose $p > q > 1$ and (X, μ) is a doubling measure space s.t.

If there is a system of measures $\mathcal{L} = \{\lambda_E\}_{E \in \mathcal{E}}$ s.t.

then

$$C \dim X \geq q.$$
Conformal dimension and Fuglede modulus

\textit{Theorem (Hak.’08)}

Suppose $p > q > 1$ and (X, μ) is a doubling measure space s.t.

- $\mu(B(x, r))/r^p \to 0$, $\forall x \in X$,

If there is a system of measures $\mathcal{L} = \{\lambda_E\}_{E \subset \mathcal{E}}$ s.t.

then

$$C \dim X \geq q.$$
Theorem (Hak.’08)

Suppose $p > q > 1$ and (X, μ) is a doubling measure space s.t.

- $\mu(B(x, r))/r^p \to 0$, $\forall x \in X$,
- $\mathcal{E} = \{E\} \subset X$ is a family of subsets s.t. $C \dim E \geq 1$, $\forall E \in \mathcal{E}$.

If there is a system of measures $\mathcal{L} = \{\lambda_E\}_{E \subset \mathcal{E}}$ s.t.

then

$C \dim X \geq q$.
Conformal dimension and Fuglede modulus

Theorem (Hak.’08)

Suppose $p > q > 1$ and (X, μ) is a doubling measure space s.t.
- $\mu(B(x, r))/r^p \to 0$, $\forall x \in X$,
- $\mathcal{E} = \{E\} \subset X$ is a family of subsets s.t. $C \dim E \geq 1$, $\forall E \in \mathcal{E}$.

If there is a system of measures $\mathcal{L} = \{\lambda_E\}_{E \subseteq \mathcal{E}}$ s.t.
- for every $s > 1$
 $$\lambda_E(B(x, r)) \geq Cr^s, \ \forall x \in E \text{ and } r < r_E.$$

then
 $$C \dim X \geq q.$$
Conformal dimension and Fuglede modulus

Theorem (Hak.’08)

Suppose $p > q > 1$ and (X, μ) is a doubling measure space s.t.

- $\mu(B(x, r))/r^p \to 0$, $\forall x \in X$,
- $\mathcal{E} = \{E\} \subset X$ is a family of subsets s.t. $C \dim E \geq 1$, $\forall E \in \mathcal{E}$.

If there is a system of measures $\mathcal{L} = \{\lambda_E\}_{E \subset \mathcal{E}}$ s.t.

- for every $s > 1$
 $$\lambda_E(B(x, r)) \geq Cr^s, \ \forall x \in E \text{ and } r < r_E.$$
- $\text{mod } q\mathcal{L} > 0$

then

$$C \dim X \geq q.$$
Conformal dimension and Fuglede modulus

Theorem (Hak.’08)

Suppose \(p > q > 1 \) and \((X, \mu)\) is a doubling measure space s.t.

- \(\mu(B(x, r))/r^p \rightarrow 0, \forall x \in X \),
- \(E = \{E\} \subset X \) is a family of subsets s.t. \(\mathcal{C} \dim E \geq 1, \forall E \in \mathcal{E} \).

If there is a system of measures \(\mathcal{L} = \{\lambda_E\}_{E \subset \mathcal{E}} \) s.t.

- for every \(s > 1 \)

\[
\lambda_E(B(x, r)) \geq Cr^s, \ \forall x \in E \text{ and } r < r_E.
\]

- \(\text{mod } q \mathcal{L} > 0 \)

then

\[\mathcal{C} \dim X \geq q. \]

- Here \(\text{mod } q \) is the modulus of a family of measures, defined as follows...
Definition of modulus

- The \(p \)-modulus of \(\mathcal{L} \) is

\[
\text{mod} \ p(\mathcal{L}, \mu) = \inf_{\rho} \int_{\mathcal{X}} \rho^p d\mu,
\]

where \(\inf \) is over all \(\rho \geq 0 \) Borel functions \(\rho \) s.t.

\[
\int_{\mathcal{E}} \rho d\lambda_E \geq 1, \quad \forall \lambda_E \in \mathcal{L}
\]
Definition of modulus

- The p-modulus of \mathcal{L} is

$$\text{mod}_p(\mathcal{L}, \mu) = \inf_{\rho} \int_X \rho^p d\mu,$$

where \inf is over all $\rho \geq 0$ Borel functions ρ s.t.

$$\int_E \rho d\lambda_E \geq 1, \quad \forall \lambda_E \in \mathcal{L}$$

- Here
 $\mathcal{E} = \{E\}$ be a family of subsets in X,
 $\mathcal{L} = \{\lambda_E\}_{E \in \mathcal{E}}$ be a family of measures supported on \mathcal{E}.

Theorem A. Conformal dimension of self-affine sets

Theorem B. Conformal dimension and Fuglede modulus
Outline

Preliminaries
definitions
Hausdorff dimension can increase
Hausdorff dimension can’t decrease

Results
Theorem A. conformal dimension of self-affine sets
Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
Step 1: definitions of \(\mu, \mathcal{E} \) and \(\mathcal{L} \).
Step 2: subsets of conformal dimension 1
Step 3: modulus is positive
Definition of μ

- Consider the probability measure μ_p on X corresponding to the probability vector p with

$$p_{ij} = \mu(R_{ij}) = \frac{1}{mr(j)},$$

here R_{ij} is the rectangle in the i-th raw and j-th column.
Definition of μ

- Consider the probability measure μ_p on X corresponding to the probability vector \mathbf{p} with

$$p_{ij} = \mu(R_{ij}) = \frac{1}{mr(j)},$$

here R_{ij} is the rectangle in the i-th raw and j-th column.

- Note, $\dim \mu = D = 1 + \frac{1}{m} \sum_{j=1}^{m} \log_n r(j)$.

Definition of μ

- Consider the probability measure μ_p on X corresponding to the probability vector p with

 \[p_{ij} = \mu(R_{ij}) = \frac{1}{mr(j)}, \]

 here R_{ij} is the rectangle in the i-th raw and j-th column.

- Note, $\dim \mu = D = 1 + \frac{1}{m} \sum_{j=1}^{m} \log n r(j)$.

- Consider

 \[X_0 = \left\{ x \in X : \lim_{r \to 0} \frac{\mu(B_r(x))}{r^D} = 0 \right\} \]
Definition of μ

- Consider the probability measure μ_p on X corresponding to the probability vector p with

\[p_{ij} = \mu(R_{ij}) = \frac{1}{mr(j)}, \]

where R_{ij} is the rectangle in the i-th raw and j-th column.

- Note, $\dim \mu = D = 1 + \frac{1}{m} \sum_{j=1}^{m} \log_n r(j)$.

- Consider

\[X_0 = \left\{ x \in X : \lim_{r \to 0} \frac{\mu(B_r(x))}{r^D} = 0 \right\} \]

- $\dim_H X_0 = D$.
Definition of μ

- Consider the probability measure μ_p on X corresponding to the probability vector \mathbf{p} with

$$p_{ij} = \mu(R_{ij}) = \frac{1}{mr(j)},$$

where R_{ij} is the rectangle in the i-th row and j-th column.

- Note, $\dim \mu = D = 1 + \frac{1}{m} \sum_{j=1}^{m} \log n r(j)$.

- Consider

$$X_0 = \left\{ x \in X : \lim_{r \to 0} \frac{\mu(B_r(x))}{r^D} = 0 \right\}$$

- $\dim_H X_0 = D$.

- Want to show that X_0 is minimal.
Definition of \mathcal{E} and \mathcal{L}

- Need to find a family of sets $\mathcal{E} = \{E\}$ and measures $\{\lambda_E\}_{E \in \mathcal{E}}$ s.t.
 1. $\mathcal{C} \dim E = 1, \forall E \in \mathcal{E}$,
 2. $\text{mod}_1(\{\lambda_E\}, \mu) > 0$.
Definition of \mathcal{E} and \mathcal{L}

- Need to find a family of sets $\mathcal{E} = \{E\}$ and measures $\{\lambda_E\}_{E \in \mathcal{E}}$ s.t.
 1. $C \dim E = 1, \forall E \in \mathcal{E}$,
 2. $\text{mod}_1(\{\lambda_E\}, \mu) > 0$.
- Every $E \in \mathcal{E}$ is the intersection of a “piecewise horizontal Cantor set" in X with X_0.
Definition of \mathcal{E} and \mathcal{L}

- Need to find a family of sets $\mathcal{E} = \{E\}$ and measures $\{\lambda_E\}_{E \in \mathcal{E}}$ s.t.
 1. $\mathcal{C} \dim E = 1$, $\forall E \in \mathcal{E}$,
 2. $\text{mod}_1(\{\lambda_E\}, \mu) > 0$.
- Every $E \in \mathcal{E}$ is the intersection of a “piecewise horizontal Cantor set” in X with X_0.
- λ_E is the pullback of the Lesbegue measure under the projection, so clearly satisfies the condition of the theorem.
Outline

Preliminaries
definitions
Hausdorff dimension can increase
Hausdorff dimension can’t decrease

Results
Theorem A. conformal dimension of self-affine sets
Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
Step 1: definitions of μ, E and L.
Step 2: subsets of conformal dimension 1
Step 3: modulus is positive
Showing that every $E \in \mathcal{E}$ is minimal amounts to showing that

$$X_j = \left\{ \sum_{i=1}^{\infty} \frac{x_i}{m^i} : \frac{\#\{i \leq n : x_i = j\}}{n} \to \frac{1}{m} \right\} \subset [0, 1],$$

has conformal dimension 1 for every $j \in \{0, 1, \ldots, m-1\}$. This follows from the law of large numbers combined with the following...
$C\dim E = 1$

Showing that every $E \in \mathcal{E}$ is minimal amounts to showing that

$$X_j = \left\{ \sum_{i=1}^{\infty} \frac{x_i}{m_i} : \#\{i \leq n : x_i = j\} \to \frac{1}{m} \right\} \subset [0, 1],$$

has conformal dimension 1 for every $j \in \{0, 1, \ldots, m-1\}$.

This follows from the law of large numbers combined with the following

Lemma (Binder, Hak.)

*Construct a Cantor set $E \subset [0, 1]$ by dividing every component left from the $(i-1)$-st step into n_i equal parts and removing m_i. If

$$\sum_{i=1}^{\infty} \left(\frac{m_i}{n_i} \right)^t < \infty, \forall t > 0$$

then $C\dim E = 1$.***
Outline

Preliminaries
- definitions
 - Hausdorff dimension can increase
 - Hausdorff dimension can’t decrease

Results
- Theorem A. conformal dimension of self-affine sets
- Theorem B. conformal dimension and Fuglede modulus

Sketch of the proof of Thm. A
- Step 1: definitions of μ, \mathcal{E} and \mathcal{L}.
- Step 2: subsets of conformal dimension 1
- Step 3: modulus is positive
Preliminaries
Results
Sketch of the proof of Thm. A
Step 1: Definitions of μ, E and L
Step 2: Subsets of conformal dimension 1
Step 3: Modulus is positive

mod $\,_{1}(\mathcal{L}, \mu) = 1$

Lemma ($\mu \ll \mathcal{L}$)
\[\text{mod}_1(\mathcal{L}, \mu) = 1\]

<table>
<thead>
<tr>
<th>Lemma ((\mu \ll \mathcal{L}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_1 If (\lambda_E(A) = 0), (\forall E \in \mathcal{E}) then (\mu(A) = 0).</td>
</tr>
</tbody>
</table>
mod _1(L, \mu) = 1

Lemma (\mu \ll L)

AC_1 \text{ If } \lambda_E(A) = 0, \forall E \in \mathcal{E} \text{ then } \mu(A) = 0.

AC_2 \text{ For every } A \subset \mathbb{R}^2

\mu(A) = \int_0^1 \nu_t(A \cap \{x = t\}) dt,

where \nu_t is the conditional measure of \mu given t.
mod_1(\mathcal{L}, \mu) = 1

Lemma (\mu \ll \mathcal{L})

\begin{itemize}
 \item **AC_1** If \(\lambda_E(A) = 0, \forall E \in \mathcal{E} \) then \(\mu(A) = 0 \).
 \item **AC_2** For every \(A \subset \mathbb{R}^2 \)
 \[\mu(A) = \int_0^1 \nu_t(A \cap \{x = t\}) dt, \]
 where \(\nu_t \) is the conditional measure of \(\mu \) given \(t \).
\end{itemize}

- Our choice of \(\mathcal{E} \) and \(\mathcal{L} \) implies that if \(\rho \) is extremal then there is a function \(\varrho(x) \) s.t. \(\forall E \in \mathcal{E} \)
 \[\rho(x, y) = \varrho(x), \text{ for a.e. } x \in [0, 1]. \]
mod\(_1(\mathcal{L}, \mu) = 1\)

Lemma (\(\mu \ll \mathcal{L}\))

\(\text{AC}_1\) If \(\lambda_E(A) = 0, \forall E \in \mathcal{E}\) then \(\mu(A) = 0\).

\(\text{AC}_2\) For every \(A \subset \mathbb{R}^2\)

\[
\mu(A) = \int_0^1 \nu_t(A \cap \{x = t\}) dt,
\]

where \(\nu_t\) is the conditional measure of \(\mu\) given \(t\).

- Our choice of \(\mathcal{E}\) and \(\mathcal{L}\) implies that if \(\rho\) is extremal then there is a function \(\varrho(x)\) s.t. \(\forall E \in \mathcal{E}\)

\[
\rho(x, y) = \varrho(x), \text{ for a.e. } x \in [0, 1].
\]

- Lemma (\(\mu \ll \mathcal{L}\)) implies

\[
\int_X \rho(z) d\mu = \int_0^1 \varrho(x) dx \geq 1.
\]
mod \(1(\mathcal{L}, \mu) = 1\)

Indeed,

- Let

\[A = \{(x, y) \in X : \rho(x, y) \neq \varrho(\pi(x))\} \]
Indeed,

- Let

\[A = \{(x, y) \in X : \rho(x, y) \neq \varrho(\pi(x))\} \]

- our choice of \(\lambda_E \) implies \(\lambda_E(A) = 0, \forall E \in \mathcal{E} \)
mod \(_1(\mathcal{L}, \mu) = 1\)

Indeed,

- Let
 \[A = \{ (x, y) \in X : \rho(x, y) \neq \varrho(\pi(x)) \} \]

- our choice of \(\lambda_E \) implies \(\lambda_E(A) = 0, \forall E \in \mathcal{E} \)

- \(AC_1 \quad \Rightarrow \quad \mu(A) = 0. \)
Indeed,

- Let
 \[A = \{(x, y) \in X : \rho(x, y) \neq \varrho(\pi(x))\} \]
- our choice of \(\lambda_E \) implies \(\lambda_E(A) = 0, \forall E \in \mathcal{E} \)
- \(AC_1 \Rightarrow \mu(A) = 0. \)
- \(AC_2 \Rightarrow \]

\[\int_X \rho(x, y) d\mu = \int_A \rho(x, y) d\mu = \int_0^1 \varrho(x) dx \geq 1. \]

Q.E.D.