Quasisymmetric Geometry of Slit Carpets

Hrant Hakobyan
Kansas State University

March 30, 2012
Outline

1. Uniformization and Rigidity
 - Conformal Mappings
 - Quasisymmetric Mappings

2. Modulus
Circle domains

- A domain \(D \subset \mathbb{C} \) is a **circle domain** if every component of \(\mathbb{C} \setminus D \) is a point or a (round) disc.
Circle domains

- A domain $D \subset \mathbb{C}$ is a **circle domain** if every component of $\mathbb{C} \setminus D$ is a point or a (round) disc.

- A class of domains \mathcal{D} is **conformally rigid** if whenever $D_1, D_2 \in \mathcal{D}$ are conformally equivalent then $D_2 = M(D_1)$ for some Möbius transformation M.

Theorem (Uniformization & Rigidity - Koebe' 1918)

Every finitely connected domain $D \subset \mathbb{C}$ is conformal to a circle domain. Finitely connected circle domains are conformally rigid.

Conjecture. (Koebe' 1908)

Every domain $D \subset \mathbb{C}$ is conformal to a circle domain.

Theorem (He, Schramm' 1993)

Every countably connected domain is conformal to a circle domain. Countably connected circle domains are conformally rigid.
A domain $D \subset \mathbb{C}$ is a **circle domain** if every component of $\mathbb{C} \setminus D$ is a point or a (round) disc.

A class of domains \mathcal{D} is **conformally rigid** if whenever $D_1, D_2 \in \mathcal{D}$ are conformally equivalent then $D_2 = M(D_1)$ for some Möbius transformation M.

Theorem (Uniformization & Rigidity - Koebe’ 1918)

Every finitely connected domain $D \subset \mathbb{C}$ is conformal to a circle domain.
A domain $D \subset \mathbb{C}$ is a **circle domain** if every component of $\mathbb{C} \setminus D$ is a point or a (round) disc.

A class of domains \mathcal{D} is **conformally rigid** if whenever $D_1, D_2 \in \mathcal{D}$ are conformally equivalent then $D_2 = M(D_1)$ for some Möbius transformation M.

Theorem (Uniformization & Rigidity - Koebe’ 1918)

- Every *finitely connected* domain $D \subset \mathbb{C}$ is conformal to a circle domain.
- Finitely connected circle domains are conformally rigid.
Circle domains

- A domain $D \subset \mathbb{C}$ is a **circle domain** if every component of $\mathbb{C} \setminus D$ is a point or a (round) disc.

- A class of domains \mathcal{D} is **conformally rigid** if whenever $D_1, D_2 \in \mathcal{D}$ are conformally equivalent then $D_2 = M(D_1)$ for some Möbius transformation M.

Theorem (Uniformization & Rigidity - Koebe’ 1918)

- Every *finitely connected* domain $D \subset \mathbb{C}$ is conformal to a circle domain.

- Finitely connected circle domains are conformally rigid.

Conjecture. (Koebe’ 1908)

Every domain $D \subset \mathbb{C}$ *is conformal to a circle domain.*
Circle domains

- A domain $D \subset \mathbb{C}$ is a circle domain if every component of $\mathbb{C} \setminus D$ is a point or a (round) disc.
- A class of domains \mathcal{D} is conformally rigid if whenever $D_1, D_2 \in \mathcal{D}$ are conformally equivalent then $D_2 = M(D_1)$ for some Möbius transformation M.

Theorem (Uniformization & Rigidity - Koebe’ 1918)

- Every finitely connected domain $D \subset \mathbb{C}$ is conformal to a circle domain.
- Finitely connected circle domains are conformally rigid.

Conjecture. (Koebe’ 1908)

Every domain $D \subset \mathbb{C}$ is conformal to a circle domain.

Theorem (He, Schramm’ 1993)

- Every countably connected domain is conformal to a circle domain.
- Countably connected circle domains are conformally rigid.
Definition

A domain $D \subset \mathbb{C}$ is a *slit domain* if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).
Definition

A domain $D \subset \mathbb{C}$ is a *slit domain* if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).
Definition

A domain $D \subset \mathbb{C}$ is a **slit domain** if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).
Definition

A domain $D \subset \mathbb{C}$ is a **slit domain** if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).

Theorem (De Possel’1931, Grötzsch’ 1932)

- *Every* domain $D \subset \mathbb{C}$ is conformal to a slit domain.
Definition

A domain $D \subset \mathbb{C}$ is a *slit domain* if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).

Theorem (De Possel’1931, Grötzsch’ 1932)

- *Every* domain $D \subset \mathbb{C}$ is conformal to a slit domain.
- *Countably connected* slit domains are conformally rigid.
Slit domains

Definition

A domain $D \subset \mathbb{C}$ is a **slit domain** if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).

Theorem (De Possel’1931, Grötzsch’ 1932)

- *Every* domain $D \subset \mathbb{C}$ is conformal to a slit domain.
- Countably connected slit domains are conformally rigid.

Remark.

To prove Koebe’s conjecture it is enough to prove it for slit domains.
Definition

A domain $D \subset \mathbb{C}$ is a *slit domain* if every component of $\mathbb{C} \setminus D$ (except possibly one) is a point or a segment parallel to \mathbb{R} (or some other line).

Theorem (De Possel’1931, Grötzsch’ 1932)

- *Every* domain $D \subset \mathbb{C}$ is conformal to a slit domain.
- Countably connected slit domains are conformally rigid.

Remark.

To prove Koebe’s conjecture it is enough to prove it for slit domains.

Remark.

It is also important to understand if there is a (sub-)limit when the number of boundary components tends to infinity.
What if $D_1 \supset D_2 \supset \ldots$ is a decreasing sequence of domains, such that $\bigcap_{i=1}^{\infty} D_i$ has no interior?

- standard Sierpinski carpet.
What if $D_1 ⊃ D_2 ⊃ \ldots$ is a decreasing sequence of domains, such that $\cap_{i=1}^{\infty} D_i$ has no interior?

standard Sierpinski carpet.
What if $D_1 \supset D_2 \supset \ldots$ is a decreasing sequence of domains, such that $\bigcap_{i=1}^{\infty} D_i$ has no interior?

- standard Sierpinski carpet

Theorem (Whyburn)

Let D be a Jordan domain and $E = D \setminus \bigcup_{i=1}^{\infty} D_i$ such that

- $\overline{D_i} \cap \overline{D_j} = \emptyset$, if $i \neq j$,
- $\text{diam} D_i \to 0$, as $i \to \infty$,
- E has no interior points.

Then E is homeomorphic to the standard Sierpinski carpet.
What if $D_1 \supset D_2 \supset \ldots$ is a decreasing sequence of domains, such that $\bigcap_{i=1}^{\infty} D_i$ has no interior?

- standard Sierpinski carpet

Theorem (Whyburn)

Let D be a Jordan domain and $E = D \setminus \bigcup_{i=1}^{\infty} D_i$ such that

- $\overline{D_i} \cap \overline{D_j} = \emptyset$, if $i \neq j$,
- $\text{diam}D_i \to 0$, as $i \to \infty$,
- E has no interior points.

Then E is homeomorphic to the standard Sierpinski carpet.

Definition

A carpet is a metric space homeomorphic to the standard Sierpinski carpet.
Outline

1 Uniformization and Rigidity
 - Conformal Mappings
 - Quasisymmetric Mappings

2 Modulus
Definition

A homeomorphism $F : X \rightarrow Y$ between metric spaces is (weakly) Quasisymmetric (QS) if $\exists H \geq 1$ such that for every triple of distinct points $x, y, z \in X$ the following holds

$$\frac{|x - y|}{|x - z|} \leq 1 \implies \frac{|f(x) - f(y)|}{|f(x) - f(z)|} \leq H.$$
Round carpets

Definition

A **round carpet** is a carpet s.t all of the complementary components are round discs.
Round carpets

Definition
A **round carpet** is a carpet s.t all of the complementary components are round discs.

Theorem (Uniformization - Bonk’2011)
If $E \subseteq \mathbb{C}$ is a carpet whose peripheral circles are uniformly relatively separated uniform quasicircles then E is quasisymmetric to a round carpet.
Round carpets

Definition

A **round carpet** is a carpet s.t all of the complementary components are round discs.

Theorem (Uniformization - Bonk’2011)

If $E \subset \mathbb{C}$ is a carpet whose peripheral circles are uniformly relatively separated uniform quasicircles then E is quasisymmetric to a round carpet.

- Relative distance $\Delta(E, F) = \frac{\text{dist}(E,F)}{\min(\text{diam}E, \text{diam}F)}$,

- Uniformly relatively separated means $\Delta(C_i, C_j) \geq c > 0$, for every pair of distinct peripheral circles C_i, C_j.

- Uniform quasicircles means images of the circle under quasisymmetries with the same H.
Definition

A **round carpet** is a carpet s.t all of the complementary components are round discs.

Theorem (Uniformization - Bonk’2011)

If $E \subset \mathbb{C}$ is a carpet whose peripheral circles are uniformly relatively separated uniform quasicircles then E is quasisymmetric to a round carpet.

- Relative distance $\Delta(E, F) = \frac{\text{dist}(E,F)}{\min(\text{diam}E, \text{diam}F)}$.
- Uniformly relatively separated means $\Delta(C_i, C_j) \geq c > 0$, for every pair of distinct peripheral circles C_i, C_j.
- Uniform quasicircles means images of the circle under quasisymmetries with the same H.

Theorem (Rigidity - Bonk, Kleiner, Merenkov’2009)

Round carpets are quasisymmetrically rigid if and only if they have zero measure.
Example from Kleinian groups
Uniformizing square carpets
Uniformizing square carpets
Given a subset of $E \subset \mathbb{C}$ define the inner path metric on E as follows. For $x, y \in E$

$$d(x, y) := \inf\{\ell(\gamma) : \gamma(0) = x, \gamma(1) = y\},$$

where $\ell(\gamma)$ denotes the length γ.

\begin{itemize}
 \item Given a slit domain S we will denote by \bar{S} the completion of S with respect to the path metric.
 \item Given a sequence of reals $r = \{r_i\}_{i=1}^{\infty}$, $r_i \in (0, 1)$, $\forall i \in \mathbb{N}$ can construct the corresponding slit carpet $S(r)$ as follows: Remove from every diadic square $Q \in \Delta$ a vertical slit of the same length $l_i = \frac{1}{2^i}r_i$.
Given a subset of $E \subset \mathbb{C}$ define the **inner path metric** on E as follows. For $x, y \in E$

$$d(x, y) := \inf \{ \ell(\gamma) : \gamma(0) = x, \gamma(1) = y \},$$

where $\ell(\gamma)$ denotes the length γ.

Given a slit domain S we will denote by $S = \overline{S}$ the completion of S with respect to the path metric.
Given a subset of \(E \subset \mathbb{C} \) define the *inner path metric* on \(E \) as follows. For \(x, y \in E \)

\[
d(x, y) := \inf \{ \ell(\gamma) : \gamma(0) = x, \gamma(1) = y \},
\]

where \(\ell(\gamma) \) denotes the length \(\gamma \).

- Given a slit domain \(S \) we will denote by \(S = \overline{S} \) the completion of \(S \) with respect to the path metric.
- Given a sequence of reals \(r = \{r_i\}_{i=1}^{\infty}, r_i \in (0, 1), \forall i \in \mathbb{N} \) can construct the corresponding slit carpet \(S(r) \) as follows:
Standard Slit domains and Path metric

- Given a subset of $E \subset \mathbb{C}$ define the inner path metric on E as follows. For $x, y \in E$

 \[d(x, y) := \inf \{ \ell(\gamma) : \gamma(0) = x, \gamma(1) = y \}, \]

 where $\ell(\gamma)$ denotes the length γ.

- Given a slit domain S we will denote by $S = \overline{S}$ the completion of S with respect to the path metric.

- Given a sequence of reals $r = \{r_i\}_{i=1}^{\infty}$, $r_i \in (0, 1)$, $\forall i \in \mathbb{N}$ can construct the corresponding slit carpet $S(r)$ as follows:

- Remove from every diadic square $Q \in \Delta_i$ a vertical slit of the same length l_i
Given a subset of $E \subset \mathbb{C}$ define the **inner path metric** on E as follows. For $x, y \in E$

$$d(x, y) := \inf\{\ell(\gamma) : \gamma(0) = x, \gamma(1) = y\},$$

where $\ell(\gamma)$ denotes the length γ.

- Given a slit domain S we will denote by $S = \overline{S}$ the completion of S with respect to the path metric.
- Given a sequence of reals $r = \{r_i\}_{i=1}^{\infty}, r_i \in (0, 1), \forall i \in \mathbb{N}$ can construct the corresponding slit carpet $S(r)$ as follows:
 - Remove from every diadic square $Q \in \Delta_i$ a vertical slit of the same length l_i
 - $l_i = \frac{1}{2^i} r_i$.
Theorem (Uniformization by round/square carpets - H.'2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent
- S is quasisymmetric to a round/square carpet
Theorem (Uniformization by round/square carpets - H.’2012)

Let \(S \) be the slit carpet corresponding to \(r \). Then the following are equivalent

- \(S \) is quasisymmetric to a round/square carpet of positive area,
Theorem (Uniformization by round/square carpets - H.’2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
QS geometry of standard slit carpets

Theorem (Uniformization by round/square carpets - H.’2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$.
Theorem (Uniformization by round/square carpets - H.’2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$,
- S is 2-Loewner in the sense of Heinonen and Koskela.
Theorem (Uniformization by round/square carpets - H.’2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent:

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$,
- S is 2-Loewner in the sense of Heinonen and Koskela.

Ahlfors 2-regular space (X, d, μ) is 2 Loewner if there is a decreasing function $\psi(0, \infty) \to (0, \infty)$ such that

$$\text{mod}_2(E, F : X) \geq \psi(\Delta(E, F)).$$
Theorem (Uniformization by round/square carpets - H.'2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent:

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$,
- S is 2-Loewner in the sense of Heinonen and Koskela.

Ahlfors 2-regular space (X, d, μ) is 2 Loewner if there is a decreasing function $\psi(0, \infty) \to (0, \infty)$ such that

$$\text{mod}_2(E, F : X) \geq \psi(\Delta(E, F)).$$

- Zero measure is analogous to $r \notin \ell^2$.

Theorem (Uniformization by round/square carpets - H.’2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent:

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$,
- S is 2-Loewner in the sense of Heinonen and Koskela.

Ahlfors 2-regular space (X, d, μ) is 2 Loewner if there is a decreasing function $\psi(0, \infty) \to (0, \infty)$ such that

$$\text{mod}_2(E, F : X) \geq \psi(\Delta(E, F)).$$

- Zero measure is analogous to $r \notin \ell^2$.

Theorem (Rigidity - H.’2012)

Let $r_1, r_2 \notin \ell^2$. If $r_1 \neq r_2$ then $S(r_1)$ and $S(r_2)$ are not quasisymmetric to each other.
Theorem (Uniformization by round/square carpets - H.'2012)

Let S be the slit carpet corresponding to r. Then the following are equivalent

- S is quasisymmetric to a round/square carpet of positive area,
- S can be quasisymmetrically embedded into \mathbb{C},
- $r \in \ell^2$,
- S is 2-Loewner in the sense of Heinonen and Koskela.

Ahlfors 2-regular space (X, d, μ) is 2 Loewner if there is a decreasing function $\psi(0, \infty) \to (0, \infty)$ such that

$$\text{mod}_2(E, F : X) \geq \psi(\Delta(E, F)).$$

- Zero measure is analogous to $r \notin \ell^2$.

Theorem (Rigidity - H.'2012)

Let $r_1, r_2 \notin \ell^2$. If $r_1 \neq r_2$ then $S(r_1)$ and $S(r_2)$ are not quasisymmetric to each other.

Question.

Are standard slit carpets rigid if $r \in \ell^2$?
Given a curve family $\Gamma \subset \mathbb{R}^n$ we say a Borel function $\rho : \mathbb{R}^n \to \mathbb{R}_{[0,\infty)}$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_\gamma \rho ds \geq 1, \forall \gamma \in \Gamma.$$
Given a curve family $\Gamma \subset \mathbb{R}^n$ we say a Borel function $\rho : \mathbb{R}^n \rightarrow [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_\gamma \rho ds \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p d\mathcal{L}^n.$$
Given a curve family $\Gamma \subset \mathbb{R}^n$ we say a Borel function $\rho : \mathbb{R}^n \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma} \rho \, ds \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p \, d\mathcal{L}^n.$$

\mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds

$$C^{-1} R^n \leq \mathcal{L}^n B(x, R) \leq CR^n.$$
Modulus in \mathbb{R}^n

- Given a curve family $\Gamma \subset \mathbb{R}^n$ we say a Borel function $\rho : \mathbb{R}^n \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if
 \[\int_\gamma \rho ds \geq 1, \forall \gamma \in \Gamma. \]

- Let $p \geq 1$. p-modulus of Γ is
 \[\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p d\mathcal{L}^n. \]

- \mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds
 \[C^{-1} R^n \leq \mathcal{L}^n B(x, R) \leq CR^n. \]

- In \mathbb{R}^n the n-modulus $\text{mod}_n \Gamma$ is called conformal modulus.
Given a curve family $\Gamma \subset \mathbb{R}^n$ we say a Borel function $\rho : \mathbb{R}^n \to \mathbb{R}_{[0,\infty)}$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma} \rho \, ds \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p \, d\mathcal{L}^n.$$

\mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds

$$C^{-1} R^n \leq \mathcal{L}^n B(x, R) \leq CR^n.$$

In \mathbb{R}^n the n-modulus $\text{mod}_n \Gamma$ is called conformal modulus.
Uniformization and Rigidity Modulus

Quesisymmetric Geometry of Slit Carpets
Let U be the solution to this mixed Dirichlet-Neumann problem.
Relation to harmonic functions.

Let U be the solution to this mixed Dirichlet-Neumann problem.

Then $\rho(z) = \|\nabla U(z)\|$ is the extremal metric for the 2-modulus.
Relation to harmonic functions.

Let U be the solution to this mixed Dirichlet-Neumann problem.

Then $\rho(z) = \| \nabla U(z) \|$ is the extremal metric for the 2-modulus

$$\text{mod}_2 \Gamma(E, F; W) = \int \int_W \| \nabla U \|^2 dA.$$
Let U be the solution to this mixed Dirichlet-Neumann problem.

Then $\rho(z) = \|\nabla U(z)\|$ is the extremal metric for the 2-modulus

$$ \text{mod}_2 \Gamma(E, F; W) = \int \int_W \|\nabla U\|^2 dA. $$

$\Phi = U + iU^*$.
There is a unique conformal mapping which maps W onto a rectangle so that E, F are mapped onto the vertical sides. No analogs in higher dimensions.
There is a unique conformal mapping which maps W onto a rectangle with horizontal slits removed and so that E, F are mapped onto the vertical sides.
Horizontal path families in slit domains

Figure: Path families $\Gamma_1, \Gamma_2, \Gamma_3$
Theorem (H.’2012)

Let $S(r)$ be the slit carpet corresponding to r. Then

- $\text{mod}_p \Gamma_n \to 0$, for some $p > 1$, if and only if
- $\text{mod}_p \Gamma_n \to 0$, for all $p > 1$, if and only if
- $r \not\in \ell^2$, if and only if
- $S(r)$ does not quasisymmetrically embed into \mathbb{C}.
- $tr - \text{mod}(\Gamma, S_n) \to 0$
Theorem (H.'2012)

Let $S(r)$ be the slit carpet corresponding to r. Then

- $\text{mod}_p \Gamma_n \to 0$, for some $p > 1$, if and only if
- $\text{mod}_p \Gamma_n \to 0$, for all $p > 1$, if and only if
- $r \notin \ell^2$, if and only if
- $S(r)$ does not quasisymmetrically embed into \mathbb{C}.
- $tr - \text{mod}(\Gamma, S_n) \to 0$

Theorem (H.'2012)

Let S be the slit carpet corresponding to r. Then

- $\text{mod}_1 \Gamma_n \to 0$, if and only if
- $r \notin \ell^1$.

QS geometry of slit carpets
Suppose W is a finitely connected domain with $\partial W = C_1 \cup \ldots \cup C_N$. Given a curve family $\Gamma \subset W$ we say a Borel function $\rho : \hat{W} \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma \cap W} \rho \, ds + \sum_{\gamma \cap C_i \neq \emptyset} \rho_i \geq 1, \forall \gamma \in \Gamma.$$
O. Schramm’s transboundary modulus

- Suppose W is a finitely connected domain with $\partial W = C_1 \cup \ldots \cup C_N$
- Given a curve family $\Gamma \subset W$ we say a Borel function $\rho : \hat{W} \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma \cap W} \rho \, ds + \sum_{\gamma \cap C_i \neq \emptyset} \rho_i \geq 1, \forall \gamma \in \Gamma.$$

- Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p \, d\mathcal{L}^n.$$
Suppose W is a finitely connected domain with $\partial W = C_1 \cup \ldots \cup C_N$

Given a curve family $\Gamma \subset W$ we say a Borel function $\rho : \hat{W} \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma \cap W} \rho ds + \sum_{\gamma \cap C_i \neq \emptyset} \rho_i \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p d\mathcal{L}^n.$$

\mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds

$$C^{-1}R^n \leq \mathcal{L}^n B(x, R) \leq CR^n.$$

Suppose W is a finitely connected domain with $\partial W = C_1 \cup \ldots \cup C_N$.

Given a curve family $\Gamma \subset W$ we say a Borel function $\rho : \hat{W} \to [0, \infty)$ is admissible for Γ, denoted by $\rho \wedge \Gamma$, if

$$\int_{\gamma \cap W} \rho ds + \sum_{\gamma \cap C_i \neq \emptyset} \rho_i \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. The p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \wedge \Gamma} \int_{\mathbb{R}^n} \rho^p d\mathcal{L}^n.$$

\mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds

$$C^{-1} R^n \leq \mathcal{L}^n B(x, R) \leq CR^n.$$

In \mathbb{R}^n the n-modulus $\text{mod}_n \Gamma$ is called conformal modulus.
Suppose W is a finitely connected domain with $\partial W = C_1 \cup \ldots \cup C_N$

Given a curve family $\Gamma \subset W$ we say a Borel function $\rho : \hat{W} \to [0, \infty)$ is admissible for Γ, denoted by $\rho \land \Gamma$, if

$$\int_{\gamma \cap W} \rho ds + \sum_{\gamma \cap C_i \neq \emptyset} \rho_i \geq 1, \forall \gamma \in \Gamma.$$

Let $p \geq 1$. p-modulus of Γ is

$$\text{mod}_p \Gamma = \inf_{\rho \land \Gamma} \int_{\mathbb{R}^n} \rho^p d\mathcal{L}^n.$$

\mathcal{L}^n is n-regular, i.e. there is a constant $C \geq 1$ s.t. for every $x \in \mathbb{R}$ and $R > 0$ holds

$$C^{-1} R^n \leq \mathcal{L}^n B(x, R) \leq CR^n.$$

In \mathbb{R}^n the n-modulus $\text{mod}_n \Gamma$ is called conformal modulus.
Non self-similar square carpets

Given a sequence $a = (\frac{1}{n_1}, \frac{1}{n_2}, \ldots)$, where n_i-s are odd integers can construct a square carpet.
Non self-similar square carpets

Given a sequence $a = (a_1, a_2, \ldots)$, where a_i-s are reciprocals of odd integers can construct a square carpet.
Non self-similar square carpets

Given a sequence $\mathbf{a} = (\frac{1}{n_1}, \frac{1}{n_2}, \ldots)$, where n_i-s are odd integers can construct a square carpet.

Theorem (MacKay, Tyson, Wildrick - 2011)

Let S be the square carpet corresponding to \mathbf{a}. Then

- $\text{mod}_p \Gamma_n \to 0$, for some $p > 1$, if and only if
- $\text{mod}_p \Gamma_n \to 0$, for all $p > 1$, if and only if
- $\mathbf{a} \notin \ell^2$.

Theorem (MacKay, Tyson, Wildrick - 2011)

Let S be the slit carpet corresponding to \mathbf{a}. Then

- $\text{mod}_1 \Gamma_n \to 0$, if and only if
- $\mathbf{a} \notin \ell^1$.

HRANT HAKOBYAN KANSAS STATE UNIVERSITY

QUASISYMMETRIC GEOMETRY OF SLIT CARPETS