CANTOR SETS WHICH ARE MINIMAL FOR QUASISYMMETRIC MAPS

HRANT A. HAKOBYAN

Abstract. We show that middle interval Cantor sets of Hausdorff dimension 1 are minimal for quasisymmetric maps of a line. Combining this with a theorem of Wu we conclude that there are “rigid” subsets of a line whose every quasisymmetric image has zero length and Hausdorff dimension 1.

1. Introduction

Given $M \geq 1$ a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ is said to be M-quasisymmetric if for every pair of adjacent intervals I and J of the same length

$$\frac{1}{M} \leq \frac{|f(I)|}{|f(J)|} \leq M$$

(here and in sequel $| \cdot |$ stands for the 1-dimensional Lebesgue measure). A map is quasisymmetric if it is M-quasisymmetric for some $M \geq 1$. We denote by QS and $QS(M)$ the set of all quasisymmetric and M-quasisymmetric homeomorphisms of \mathbb{R} respectively. More generally a homeomorphism f between metric spaces (X,d_X) and (Y,d_Y) is called η-quasisymmetric if there is a self-homeomorphism $\eta : [0, \infty) \to [0, \infty)$ such that for all $x, y, z \in X$ and $t > 0$

$$d_X(x, y) \leq td_X(y, z) \Rightarrow d_Y(f(x), f(y)) \leq \eta(t)d_Y(f(y), f(z)).$$

Given a compact set $E \subset \mathbb{R}$ we are interested in the distortion of the Hausdorff dimension of E under quasisymmetric maps. If $\dim_H(E) = 0$ then $\dim_H(f(E)) = 0$ since quasisymmetric maps are Hölder continuous (see [1]). In [2] it is shown that if $\dim_H(E) > 0$ then for any $\varepsilon > 0$ one can find a quasisymmetric mapping such that $\dim_H(f(E)) > 1 - \varepsilon$. In the opposite direction Tukia [7] proved that for any $\varepsilon > 0$ there is a set $E \subset \mathbb{R}$ and $f \in QS$ such that $\dim_H(\mathbb{R} \setminus E) < \varepsilon$ and $\dim_H(f(E)) < \varepsilon$. In this article we prove the following theorem.

Theorem 1.1. Middle interval Cantor sets of dimension 1 are minimal for quasisymmetric maps.

1991 Mathematics Subject Classification. Primary 30C65; Secondary 28A78.

Key words and phrases. Hausdorff dimension, quasisymmetric maps.
A set $E \subset \mathbb{R}$ is called minimal for quasisymmetric maps if $\dim_H (f(E)) \geq \dim_H (E), \forall f \in QS$. We say $E \subset \mathbb{R}$ is a middle interval Cantor set if it can be constructed as follows. Fix a sequence $c = \{c_i\}_{i=1}^{\infty}$ of numbers in $(0,1)$. From $[0,1]$, which we will denote by $E_{0,1}$, remove the middle interval of length c_1 centered at $1/2$. Call the removed interval $J_{1,1}$ and the components of the remaining set $E_{1,1}$ and $E_{1,2}$. From the middle of $E_{1,i}$ remove the interval $J_{2,j}$ of length $c_2|E_{1,i}|$, $i = 1, 2$. Continue in the same fashion. Let $E = \bigcap_{n=0}^{\infty} \bigcup_{j=1}^{2^n-1} E_{n,j}$ where $E_{n,j} = E_{n+1,2j-1} \cup J_{n+1,j} \cup E_{n+1,2j}$, $|J_{n,j}| = c_n|E_{n-1,j}|$ and $|E_{n+1,j}| = |E_{n+1,j'}|$ for any j and j'. We will denote the set corresponding to a sequence $c = \{c_i\}_{i=1}^{\infty}$ by $E(c)$.

\begin{figure}[h]
\centering
\begin{tabular}{ccc}
$E_{0,1}$ & $E_{1,1}$ & $J_{1,1}$ & $E_{1,2}$ \\
$E_{2,1}$ & $J_{2,1}$ & $E_{2,2}$ & $J_{1,1}$ & $E_{2,3}$ & $J_{2,2}$ & $E_{2,4}$ \\
\end{tabular}
\caption{A middle interval Cantor set}
\end{figure}

The following definitions are by now standard. The conformal dimension of a metric space X is the infimal Hausdorff dimension of quasisymmetric images of X

$$C \dim (X) = \inf \{ \dim_H (Y) \mid \exists f : X \to Y \text{ quasisymmetric} \}$$

whereas the quasiconformal or global conformal dimension of a set $E \subset \mathbb{R}^n$ is defined as the infimum over a smaller collection of maps

$$QC \dim (E) = \inf \{ \dim_H (f(E)) \mid f : \mathbb{R}^n \to \mathbb{R}^n \text{ quasisymmetric} \}.$$

Using this terminology Tukia’s theorem says that there are subsets of \mathbb{R} of dimension 1 and (quasi)-conformal dimension <1 while our definition of minimality becomes a particular case of the following. $E \subset \mathbb{R}^n$ is minimal (for quasisymmetric maps) if

$$QC \dim (E) = \dim_H (E).$$

In [3] it has been shown that for every $\alpha \geq 1$ there are minimal Cantor sets in \mathbb{R}^n, $n \geq 2$, of Hausdorff dimension α. All the previously known examples of minimal subsets of \mathbb{R} had positive Lesbegue measure, these are quasisymmetrically thick sets. Recall from [8] that $E \subset \mathbb{R}$ is called a quasisymmetrically thick set if $|f(E)| > 0, \forall f \in QS$. In [4] it was shown that a middle interval Cantor set $E(c)$ with $c_1 < 1/2$ is quasisymmetrically thick if and only if $\sum_{i=1}^{\infty} c_i^p < \infty, \forall p > 0$. Our theorem gives a partial negative answer to the following question from [3] (see page 370): If E is not a quasisymmetrically thick set, then is there a quasisymmetric image of E of Hausdorff dimension <1? In other words: If a set is not quasisymmetrically thick then does it necessarily have conformal dimension <1? Theorem 1.1 shows that every middle interval Cantor set of zero length and dimension one is an example of a set which is not quasisymmetrically thick and has
quasiconformal dimension 1. Is it true in this case that $C\dim(E) = 1$? More generally: is there a set $E \subset \mathbb{R}$ such that $QC\dim(E) = 1$ but $C\dim(E) < 1$?

One could also ask: Is there a “rigid” set whose every QS-image has dimension 1 and length 0? In [8] a set is called \textit{quasisymmetrically null} if all its QS-images have zero length. In [9] Wu had shown that if $c = c_i \notin l^p, \forall p \geq 1$ then $E = E(c)$ is null. She noticed that in particular null sets can have dimension 1. Therefore combining theorem 1.1 with Wu’s theorem we get an affirmative answer to the question above.

Corollary 1.2. There are quasisymmetrically null sets which are minimal.

It’s enough to take the sequence

$$c_i = \begin{cases} (1/i)^{1/2} & \text{if } i = 2^m \\ (1/i)^{1/3} & \text{if } i \neq 2^m \end{cases}$$

and construct the corresponding Cantor set $E(c)$. We leave it to the reader to verify that the set has dimension 1 and that Wu’s condition is also satisfied.

Acknowledgements. I would like to thank my advisor Christopher Bishop for his advice and encouragement as well as Saeed Zakeri for numerous comments on an earlier version of this paper which made the exposition much more clear and concise.

2. Background Material

Recall that the Hausdorff t-measure of a metric space E is defined by

$$H^t(E) = \lim_{\varepsilon \to 0} \inf \left\{ \sum_{i=1}^{\infty} (\text{diam}U_i)^t : E \subset \bigcup_{i=1}^{\infty} U_i, \text{diam}U_i < \varepsilon \right\},$$

where $\{U_i\}_{i=1}^{\infty}$ is an open cover of E. The Hausdorff dimension of E is

$$\dim_H(E) = \inf \{ t : H^t(E) = 0 \}.$$

One usually gives an upper bound on the Hausdorff dimension of a set by finding explicit covers for it. Lower bounds can be obtained from the \textit{mass distribution principle}: If $E \subset \mathbb{R}$ supports a positive Borel measure μ satisfying $\mu(E \cap I) \leq C|I|^d$, for some fixed constant $C > 0$ and every interval $I \subset \mathbb{R}$ then $\dim_H(E) \geq d$.

Let $N(E, \varepsilon)$ be the minimal number of ε balls needed to cover E. \textit{Upper and lower Minkowski dimensions} of E are defined as

$$\overline{\dim}_M(E) = \limsup_{\varepsilon \to 0} \frac{\log N(E, \varepsilon)}{\log 1/\varepsilon}, \quad \underline{\dim}_M(E) = \liminf_{\varepsilon \to 0} \frac{\log N(E, \varepsilon)}{\log 1/\varepsilon}$$

respectively. When this two numbers are the same the common value is called the Minkowski dimension of E. Generally for a subset of a line one has $\dim_H(E) \leq \underline{\dim}_M(E) \leq \overline{\dim}_M(E) \leq 1$ (see [6]). And therefore when $\dim_H(E) = 1$ then the Minkowski dimension of E exists and is equal 1.
Lemma 2.1. If \(E = E(c) \) and \(\dim_M(E) = 1 \) then

\[
\left(\prod_{i=1}^{n} (1 - c_i) \right)^{1/n} \to 1,
\]

\[
\frac{1}{n} \sum_{i=1}^{n} c_i^p \to 0, \quad 0 < p < 1.
\]

Proof. From the definition of Minkowski dimension we get

\[
\dim_M(E) = \lim_{n \to \infty} \frac{\log 2^n}{\log \prod_{i=1}^{n} (1 - c_i)} = \lim_{n \to \infty} \frac{1}{\log 2} \frac{1}{\sqrt[1/n]{\prod_{i=1}^{n} (1 - c_i)}} = 1.
\]

Therefore (2.1) holds. Now, from the usual inequality between geometric and arithmetic means

\[
\left(\prod_{i=1}^{n} (1 - c_i) \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} (1 - c_i) \leq 1
\]

we get

\[
\frac{1}{n} \sum_{i=1}^{n} c_i^p \to 0. \quad \text{Combined with Jensen’s inequality (} \frac{1}{n} \sum_{i=1}^{n} c_i^p \leq \frac{1}{n} \sum_{i=1}^{n} c_i \text{ for } p < 1 \text{ this gives (2.2).} \]

Our main tool for proving theorem 1.1 will be the following lemma from [9]. Here we reformulate it in a rescaled manner.

Lemma 2.2. If \(f \) is an \(M \)-quasisymmetric function then for any two intervals \(J \subset I \)

\[
\frac{1}{(1 + M)^2} \left(\frac{|J|}{|I|} \right)^q \leq \frac{|f(J)|}{|f(I)|} \leq 4 \left(\frac{|J|}{|I|} \right)^p
\]

where \(p = p(M) = \log_2(1 + 1/M), q = q(M) = \log_2(1 + M). \)

3. PROOF OF THEOREM 1.1

Proof. Fix \(d < 1, M \geq 1 \) and take any \(f \in QS(M) \). We will construct a measure \(\mu \) on \(f(E) \) satisfying \(\mu(I) \leq C|I|^d \) for some constant \(C > 0 \) and therefore will conclude by the mass distribution principle that \(\dim_H(f(E)) \geq d \). Since \(d \) is arbitrary it will follow that \(\dim_H(f(E)) = 1 \). First note that \(E \) has a tree structure where each parent interval has exactly two children and the same is true for \(f(E) \).

Denote \(I_{n,j} = f(E_{n,j}) \) and define the measure \(\mu \) inductively as follows:

\[
\mu(I_{0,1}) = 1
\]

\[
\mu(I_{n,j}) = \frac{|I_{n,j}|^d}{|I_{n,j}|^d + |I'_{n,j}|^d} \mu(I_{n-1,k}), \quad n \geq 1
\]

where \(I_{n-1,k} \) is the parent of \(I_{n,j} \) and \(I'_{n,j} \) is the other interval with the same parent as \(I_{n,j} \). Now pick an interval \(I_{n,j} \) and compute \(\mu(I_{n,j})/|I_{n,j}|^d \). There is a unique sequence of nested intervals \(I_{n,j_n} \subset I_{n-1,j_{n-1}} \subset \ldots \subset I_{2,j_2} \subset I_{1,j_1} \subset I_0 = [0,1] \) and to simplify the notation we denote \(I_{k,j_k} \) by \(I_k \). Also
letting $G_n = I_{n-1} \setminus (I_n \cup I_n')$ for $n = 1, 2, \ldots$ from Wu’s inequalities it follows that

$$\frac{c_i^q}{1 + M^2} \leq \frac{|G_i|}{|I_{i-1}|} \leq 4c_i^p,$$

and hence by induction we get

$$\frac{\mu(I_n)}{|I_n|^d} = \frac{1}{|I_n|^d + |I_n'|^d} \cdot \frac{|I_n-1|^d + |I_n'|^d}{|I_n|^d + |I_n'|^d} \cdot \ldots \cdot \frac{|I_1|^d + |I_1'|^d}{|I_1|^d + |I_1'|^d} \cdot |I_0|$$

$$= \frac{(|I_1| + |G_n| + |I_n'|)^d}{|I_1|^d + |I_1'|^d} \cdot \frac{(|I_{n-1}| + |G_{n-1}| + |I_n'|)^d}{|I_{n-1}|^d + |I_{n-1}'|^d} \cdot \ldots \cdot \frac{(|I_1| + |G_1| + |I_1'|)^d}{|I_1|^d + |I_1'|^d}$$

$$= \left(\prod_{i=1}^n \frac{|I_i|^d + |I_i'|^d}{|I_i|^d + |I_i'|^d} \right)^{-1}$$

(3.1)

The second equality above uses the fact that $|I_{k-1}| = |I_k| + |G_k| + |I_k'|$, $\forall k$.

We estimate from below the product in the parentheses using (2.3). The idea is to use the left and right inequalities of (2.3) for "small" and "large" c_i-s respectively. First note that $1 - 4x \geq (1 - x)^5$ for $x < 1/10$ and let

$$S = \left\{ i \in \mathbb{N} : c_i < \min \left(\sqrt[5]{\frac{1}{10}}, \frac{1}{3} \right) \right\},$$

$$S_n = S \cap \{ i \leq n \}$$

$$s_n = \text{card}(S_n).$$

From (2.1) it follows that $s_n/n \to 1$ as $n \to \infty$.

For $i \in S$ the second inequality in (2.3) gives us the following estimate

$$p_i = \frac{|I_i|^d + |I_i'|^d}{(|I_i| + |I_i'|)^d} \cdot \frac{(|I_i| + |I_i'|)^d}{(G_i + |I_i'|)^d} = \frac{|I_i|^d + |I_i'|^d}{(|I_i|^d + |I_i'|^d)} \cdot \left(1 - \frac{|G_i|}{|I_{i-1}|} \right)^d$$

$$\geq \frac{|I_i|^d + |I_i'|^d}{(|I_i| + |I_i'|)^d} \cdot (1 - 4c_i^p)^d = \frac{1 + \left(\frac{|I_i'|}{|I_i|} \right)^d}{\left(1 + \frac{|I_i'|}{|I_i|} \right)^d} \cdot (1 - 4c_i^p)^d$$

(3.2)

Now since $c_i < 1/3$, I_i and I_i' are images of two intervals E_i and E_i' of the same length which are at most $|E_i'|$ away from each other. Therefore, twice applying the definition of quasisymmetry we immediately get that

$$\frac{1}{M} \left(1 + \frac{1}{M} \right) \leq \frac{|I_i'|/|I_i|} = \frac{|f(E_i')|/|f(E_i)|} \leq M(M + 1).$$

Considering the function $x \mapsto \frac{1+x^d}{(1+x)^d}$ for $d < 1$ one can easily see that on an interval $[(M + 1)/M^2, M(M + 1)]$ its smallest value is attained at $M(M + 1)$ and is equal to $\frac{1+(M(M+1))^d}{(1+M(M+1))^d} > 1$. We will denote this value by $C_1(M, d)$. The important
thing is that it is larger than 1. Therefore (3.2) finally gives us the following estimate

\[p_i \geq C_1(M, d)(1 - c_i^p)^{5d} \]

for \(i \in S \).

For \(i \notin S \) we use the first inequality of (2.3) to get

\[p_i = \frac{|I_i|^d + |I'_i|^d}{(|I_i| + |G_i| + |I'_i|)^d} = \left(\frac{|I_i|}{|I_{i-1}|} \right)^d + \left(\frac{|I'_i|}{|I_{i-1}|} \right)^d \]

\[\geq \frac{2}{(1 + M)^{2d}} \left(\frac{|E_i|}{|E_{i-1}|} \right)^{dq} = \frac{2}{(1 + M)^{2d}} \left(\frac{1 - c_i}{2} \right)^{dq} \]

\[= \frac{1}{C_2(M, d)} (1 - c_i)^{dq} \]

Combining (3.1),(3.2) and (3.4) we get

\[\prod_{i=1}^{n} p_i \geq \prod_{i \in S_n} C_1(1 - c_i^p)^{5d} \cdot \prod_{\{i \leq n\} \backslash S_n} C_2^{-1}(1 - c_i)^{dq} \]

\[\geq \frac{C_1^{s_n}}{C_2^{n-s_n}} \prod_{i \in S_n} (1 - c_i^p)^{5d} \prod_{i=1}^{n} (1 - c_i)^{dq} \]

where \(C_1, C_2 > 1 \). Now (3.5) together with \(s_n/n \to 1 \) imply that there is a constant \(C(M, d) > 1 \) such that

\[\prod_{i=1}^{n} p_i \geq C^n \prod_{i \in S_n} (1 - c_i^p)^{5d} \cdot C^n \prod_{i=1}^{n} (1 - c_i)^{dq} \]

Theorem will be proved if we show that the right hand side above tends to infinity as \(n \to \infty \). Indeed, from (3.6) we will get that \(\prod_{i=1}^{n} p_n \to \infty \) as \(n \to \infty \) and therefore (3.1) would imply that there is a constant \(C \) such that

\[\mu(I_n) \leq C |I_n|^d \]

for every interval \(I_n \).

For the second term in (3.6) one has

\[\log \left(C^n \prod_{i=1}^{n} (1 - c_i)^{dq} \right) \geq n \left(\log C + dq \log \prod_{i=1}^{n} (1 - c_i) \right) . \]

By (2.1) \(\sqrt[n]{\prod_{i=1}^{n} (1 - c_i)} \to 0 \) and therefore \(C^n \prod_{i=1}^{n} (1 - c_i)^{dq} \to \infty \).

On the other hand the first term in (3.6) can be bounded from below in the following manner:

\[C^n \prod_{i \in S_n} (1 - c_i^p)^{5d} \geq C^n \prod_{i=1}^{n} (1 - c_i^p)^{5d} \]
where $\tilde{c}_i = \min(c_i, \sqrt{0.1}) \leq \sqrt{0.1} < 1$. To show that the right hand side in (3.7) tends to infinity it’s enough to show that

$$\log \left(\prod_{i=1}^{n} (1 - \tilde{c}_i^p) \right) = \frac{1}{n} \sum_{i=1}^{n} \log(1 - \tilde{c}_i^p) \to 0.$$

To see the later first note that $\log(1 - x) > -2x$ for $0 < x \leq 0.1$. Since $\tilde{c}_i^p \leq 0.1$ we have

$$0 > \frac{1}{n} \sum_{i=1}^{n} \log(1 - \tilde{c}_i^p) > \frac{2}{n} \sum_{i=1}^{n} \tilde{c}_i^p > -2 \left(\frac{1}{n} \sum_{i=1}^{n} \tilde{c}_i^p + \frac{n - s_n}{n} \cdot \frac{1}{10} \right) \to 0$$

by (2.1) and by the fact that $s_n/n \to 1$. So we get that

$$C^n \prod_{i \in S_n} (1 - c_i^p)^a \to \infty, \ n \to \infty$$

and hence have proved that the growth condition of the mass distribution principle holds for all intervals of the form $f(E_{i,j})$.

To complete the proof we need to show that it holds for any interval $I \subset \mathbb{R}$. So fix an interval I. Let $l_i = |E_{i,j}|, \forall i,j$. Clearly $l_i \searrow 0$ so there is an i such that $l_{i+1} \leq |f^{-1}(I)| < l_i$. It follows then that there are at most 2 intervals of generation i which intersect $|f^{-1}(I)|$ and therefore at most 4 such intervals of generation $i + 1$. Denoting the latter ones by E_1, \ldots, E_4 (some of these may be empty) we get

$$\mu(I) \leq \mu(f(E_1)) + \ldots + \mu(f(E_4)) \leq C(|f(E_1)|^d + \ldots + |f(E_4)|^d).$$

Now since $|E_i| \leq |f^{-1}(I)|$ it follows that $E_1 \cup \ldots \cup E_4 \subset 3f^{-1}(I)$ ($3f^{-1}(I)$ is just the dilation of $f^{-1}(I)$) and hence

$$|f(E_1)|^d + \ldots + |f(E_4)|^d \leq 4|f(3f^{-1}(I))|^d.$$

From the definition of quasisymmetry it follows that

$$|f(3f^{-1}(I))|^d \leq (1 + 2M)^d|f(f^{-1}(I))|^d = C(M, d)|I|^d$$

and hence combining the last three inequalities we conclude the desired growth

$$\mu(I) \leq C|I|^d$$

for some constant C and any interval I. As we noted in the beginning if follows that $\dim_H(f(E)) = 1$ since d could be chosen as close to 1 as one would like. \hfill \Box

References

DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY, STONY BROOK, NY 11794-3651

E-mail address: hhakob@math.sunysb.edu