7.2 Application to economics: Leontief Model

Wassily Leontief won the Nobel prize in economics in 1973.

The Leontief model is a model for the economics of a whole country or region. In the model there are \(n \) industries producing \(n \) different products such that the input equals the output or, in other words, consumption equals production. One distinguishes two models:

open model: some production consumed internally by industries, rest consumed by external bodies.

Problem: Find production level if external demand is given.

closed model: entire production consumed by industries.

Problem: Find relative price of each product.

The open Leontief Model

Let the \(n \) industries denoted by \(S_1, S_2, \ldots, S_n \). The exchange of products can be described by an input-output graph

Here, \(a_{ij} \) denotes the number of units produced by industry \(S_i \) necessary to produce one unit by industry \(S_j \) and \(b_i \) is the number of externally demanded units of industry \(S_i \).

Example: Primitive model of the economy of Kansas in the 19th century.
The following equations are satisfied:

<table>
<thead>
<tr>
<th>Production of</th>
<th>Total output</th>
<th>Internal consumption</th>
<th>+</th>
<th>External Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>farming industry (in tons):</td>
<td>$x = 0.05x + 0.5y + 8000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horse industry:</td>
<td>$y = 0.01x + 2000$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(in 1000km horse rides)

In general, let x_1, x_2, \ldots, x_n, be the total output of industry S_1, S_2, \ldots, S_n, respectively. Then

$$
\begin{align*}
 x_1 &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n + b_1 \\
 x_2 &= a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n + b_2 \\
 \vdots \\
 x_n &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n + b_n
\end{align*}
$$

since $a_{ij}x_j$ is the number of units produced by industry S_i and consumed by industry S_j. The total consumption equals the total production for the product of each industry S_i.

Let

$$
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{pmatrix}, \quad
B = \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_n
\end{pmatrix}, \quad
X = \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
$$

A is called the input-output matrix, B the external demand vector and X the production level vector. The above system of linear equations is equivalent to the matrix equation

$$
X = AX + B.
$$

In the open Leontief model, A and $B \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ are given and the problem is to determine X from this matrix equation.

We can transform this equation as follows:

$$
\begin{align*}
 I_nX - AX &= B \\
 (I_n - A)X &= B \\
 X &= (I_n - A)^{-1}B
\end{align*}
$$

if the inverse of the matrix $I_n - A$ exists. ($(I_n - A)^{-1}$ is then called the Leontief inverse.) For a given realistic economy, a solution obviously must exist.

For our example we have:

$$
A = \begin{pmatrix}
 0.05 & 0.5 \\
 0.1 & 0
\end{pmatrix}, \quad
B = \begin{pmatrix}
 8,000 \\
 2,000
\end{pmatrix}, \quad
X = \begin{pmatrix}
 x \\
 y
\end{pmatrix}
$$
We obtain therefore the solution
\[X = (I_2 - A)^{-1} B \]
\[= \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) - \left(\begin{array}{cc} 0.05 & 0.5 \\ 0.1 & 0 \end{array} \right)^{-1} \left(\begin{array}{c} 8,000 \\ 2,000 \end{array} \right) \]
\[= \left(\begin{array}{cc} 0.95 & -0.5 \\ -0.1 & 1 \end{array} \right)^{-1} \left(\begin{array}{c} 8,000 \\ 2,000 \end{array} \right) \]
\[= \frac{1}{9} \left(\begin{array}{cc} 10 & 5 \\ 1 & 9.5 \end{array} \right) \left(\begin{array}{c} 8,000 \\ 2,000 \end{array} \right) \]
\[= \left(\begin{array}{c} 10,000 \\ 3,000 \end{array} \right), \]
i.e., \(x = 10,000 \) tons wheat and \(y = 3 \) Million km horse ride.

If the external demand changes, ex. \(B' = \left(\begin{array}{c} 7,300 \\ 2,500 \end{array} \right) \), we get
\[\left(\begin{array}{c} x \\ y \end{array} \right)' = (I_2 - A)^{-1} B' = \frac{1}{9} \left(\begin{array}{cc} 10 & 5 \\ 1 & 9.5 \end{array} \right) \left(\begin{array}{c} 7,300 \\ 2,500 \end{array} \right) = \left(\begin{array}{c} 9,500 \\ 3,450 \end{array} \right), \]
i.e., one doesn’t need to recompute \((I_2 - A)^{-1}\).

One difficulty with the model: How to determine the matrix \(A \) from a given economy? Typically, \(X = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \) is known, \(B = \left(\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right) \) is known and \((a_{ij}x_j)_{i,j=1,\ldots,n}\) is known. One takes therefore the matrix \((a_{ij}x_j)_{i,j=1,\ldots,n}\) and divides the \(j \)-th column by \(x_j \) for \(j = 1, \ldots, n \) to get \(A \).

Example: An economy has the two industries \(R \) and \(S \). The current consumption is given by the table

<table>
<thead>
<tr>
<th>Industry</th>
<th>(R) production</th>
<th>(S) production</th>
<th>(\text{external})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry (R)</td>
<td>50</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Industry (S)</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

Assume the new external demand is 100 units of \(R \) and 100 units of \(S \). Determine the new production levels.

Solution: The total production is 120 units for \(R \) and 200 units for \(S \). We obtain
\[X = \left(\begin{array}{c} 120 \\ 200 \end{array} \right), \quad B = \left(\begin{array}{c} 20 \\ 100 \end{array} \right), \quad A = \left(\begin{array}{cc} 50 & 50 \\ 60 & 40 \end{array} \right), \quad \text{and} \quad B' = \left(\begin{array}{c} 100 \\ 100 \end{array} \right). \]
The solution is
\[X' = (I_2 - A)^{-1} B' = \frac{1}{41} \left(\begin{array}{cc} 96 & 30 \\ 60 & 70 \end{array} \right) \left(\begin{array}{c} 100 \\ 100 \end{array} \right) = \left(\begin{array}{c} 307.3 \\ 317.0 \end{array} \right). \]
The new production levels are 307.3 and 317.0 for \(R \) and \(S \), respectively.
The closed Leontief Model

The closed Leontief model can be described by the matrix equation

\[X = AX, \]

i.e., there is no external demand. The matrix \(I_n - A \) is usually not invertible.

(Otherwise, the only solution would be \(X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \).

The input-output graph looks now as follows:

There is only internal consumption.

Example: Extended model of the economy of Kansas in the 19th century including labor.

The corresponding matrix equation is:

\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = \begin{pmatrix}
 0.05 & 0.5 & 0.5 \\
 0.1 & 0 & 0.1 \\
 0.4 & 0.1 & \frac{1331}{1800}
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}.
\]
If X is a solution, also $t \cdot X$ for every $t > 0$ is a solution. (Usually, one gets a one parameter family of solutions.) If $x \neq 0$, we can assume $x = 1,000$ by choosing the appropriate parameter t. One obtains then the solution

$$x = 1,000, \quad y = \frac{2900}{11} \approx 263.63, \quad z = \frac{18000}{11} \approx 1636.36.$$

For this computation, it is important to use rational numbers (i.e., fractions) as matrix entries since otherwise the approximation to the matrix $I_n - A$ usually will be invertible and only the trivial uninteresting solution $x = 0$, $y = 0$, and $z = 0$ will exist. This is also the reason, why the entry a_{33} has large numerator and denominator.

In a closed economy, the absolute units of output are less interesting. More important is the relative consumption of a product.

We can normalize therefore the matrix A such that the sum of every row is 1. This is a matrix \hat{A}, such that

$$\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \hat{A} \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}. \quad \text{The recipe is: Divide the } i\text{-th row of } A \text{ by the } i\text{-th component of } A \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \quad \text{(that is the sum of the } i\text{-th row}).$$

For our example, we have

$$A \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{21}{20} \\ \frac{1}{6} \\ \frac{2231}{1800} \end{pmatrix},$$

leading to the matrix

$$\hat{A} = \begin{pmatrix} \frac{1}{11} & \frac{10}{2231} & \frac{10}{2231} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{720}{2231} & \frac{180}{2231} & \frac{1331}{2231} \end{pmatrix}, \quad \hat{A} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

The entries of the matrix $\hat{A} = (\hat{a}_{i,j})_{i,j=1,...,n}$ have the following meaning: \hat{a}_{ij} is the relative consumption of the product of industry S_i by industry S_j.

Market prices

The consumption of products is regulated by prices. All income of an industry is used for buying other (or the own) products, i.e., income equals expenditure.

Let $P = (p_1, \ldots, p_n)$ the price vector; p_i is the relative price of the product of industry S_i. We can draw the flow of money into the input-output graph, the money flows in exchange for the products:
One has

\[
\begin{align*}
p_1 &= a_{11}p_1 + a_{21}p_2 + \cdots + a_{n1}p_n \\
p_2 &= a_{12}p_1 + a_{22}p_2 + \cdots + a_{n2}p_2 \\
&\quad \vdots \\
p_n &= a_{1n}p_1 + a_{2n}p_2 + \cdots + a_{nn}p_n,
\end{align*}
\]

since \(a_{ij} p_i \) is the amount paid by industry \(S_j \) for products produced by industry \(S_i \). The total income of industry \(S_j \) equals the total price \(S_j \) has to pay to all other industries.

Again, one can write this as a matrix equation:

\[PA = P. \]

This equation can be transformed in the following way

\[P \cdot I_n = P \cdot \tilde{A} \\
P \cdot (I_n - \tilde{A}) = (0, \ldots, 0). \]

The matrix \(I_n - \tilde{A} \) is (similar as \(I_n - A \)) not invertible, since \((I_n - \tilde{A}) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \).

One can show that this implies that there is also a solution \(P \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \). Since with \(P \) also \(t \cdot P \) for \(t > 0 \) is a solution, only the relative price between the different products has a well-defined meaning.

Example (continued): Assume \(p_1 = $1,000 \). One gets \(p_2 = \frac{40000}{63} \approx $634.92 \) and \(p_3 = \frac{1115500}{907} \approx $1967.37 \). We can compare these relative prices with the production levels measured by the original units and obtain the following relative prices per unit: \(p_1/x = \frac{1000}{1000} = 1 \) for one ton of wheat, \(p_2/y \approx \frac{634.92}{2.4} \approx 2.4 \) for 1000km horse ride, and \(p_3/z \approx \frac{1967.37}{1.2} \approx 1.636 \) for one man-year.

Since the above matrix equation for \(P \) is not of the usual form which we have studied so far, we make a final modification. We define

\[\tilde{\tilde{A}} = (\tilde{a}_{i,j})_{i,j=1,\ldots,n}, \quad \text{where} \quad \tilde{a}_{i,j} = \tilde{a}_{j,i}. \]
This gives us (just by switching the rôle of rows and columns) the price equation

\[\tilde{P} = \tilde{A}\tilde{P}, \]

where \(\tilde{a}_{i,j} \) is now the relative consumption of industry \(S_j \) by industry \(S_i \), so that the sum of each column is 1, and \(\tilde{P} = \left(\begin{array}{c} p_1 \\ \vdots \\ p_n \end{array} \right) \) is the price column vector.

In the textbook, our matrix \(\tilde{A} \) is again denoted by \(A \) and our \(\tilde{P} \) is denoted by \(X \). The price equation is therefore \(X = A \cdot X \). However, one has to keep in mind that this matrix \(A \) is different from the input-output matrix \(A \) we used in the open Leontief model!

Example: Let

\[A = \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{7} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{7} & \frac{1}{2} \end{array} \right). \]

Compute all wages, given that the wages for the 3rd product is $30,000.

Solution: Let \(X = \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \) be the different wages with \(z = 30,000 \). We have to solve

\[X = AX, \]

\[(I_3 - A)X = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right). \]

\[\left(\begin{array}{ccc} \frac{1}{2} & -\frac{2}{3} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{2}{3} & -\frac{3}{4} \\ -\frac{3}{4} & -\frac{2}{3} & \frac{1}{2} \end{array} \right) \left(\begin{array}{c} x \\ y \\ 30,000 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right). \]

This system of linear equations for \(x \) and \(y \) has the solution \(x = 30,000 \) and \(y = 22,500 \). The wages for the first and second product are therefore $,30,000 and $22,500, respectively.