Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.)

1. The graph in the xy-plane represented by $x = 3 \sin t$ and $y = 2 \cos t$ is
 (A) a circle
 (B) an ellipse
 (C) a hyperbola
 (D) a parabola
 (E) a line

2. The area enclosed by the polar equation $r = 4 + \cos \theta$, for $0 \leq \theta \leq 2\pi$, is
 (A) 0
 (B) $\frac{9\pi}{2}$
 (C) 18π
 (D) $\frac{33\pi}{2}$
 (E) $\frac{33\pi}{4}$

3. Find the length of the arc of the curve defined by $x = \frac{1}{2}t^2$ and $y = \frac{1}{9}(6t + 9)^{\frac{3}{2}}$, from $t = 0$ to $t = 2$.
 (A) 8
 (B) 10
 (C) 12
 (D) 14
 (E) 16
4. The area of the region inside the polar curve \(r = 4 \sin \theta \) but outside the polar curve \(r = 2 \sqrt{2} \) is given by

\[
\text{(A) } 2 \int_{\pi/4}^{3\pi/4} (4 \sin^2 \theta - 1) \, d\theta \\
\text{(B) } \frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin \theta - 2 \sqrt{2})^2 \, d\theta \\
\text{(C) } \frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin \theta - 2 \sqrt{2}) \, d\theta \\
\text{(D) } \frac{1}{2} \int_{\pi/4}^{3\pi/4} (16 \sin^2 \theta - 8) \, d\theta \\
\text{(E) } \frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin^2 \theta - 1) \, d\theta .
\]

5. If, for \(t > 0 \), \(x = t^2 \) and \(y = \cos t^2 \), then \(\frac{dy}{dx} = \)

\[
\text{(A) } \cos t^2 \\
\text{(B) } - \sin t^2 \\
\text{(C) } - \sin 2t \\
\text{(D) } \sin t^2 \\
\text{(E) } \cos 2t
\]
Part II. Free-Response Questions

1. A particle moves in the xy-plane so that its position at any time t, for $-\pi \leq t \leq \pi$, is given by $x(t) = \sin 3t$ and $y(t) = 2t$.

 (a) (4 points) Sketch the path of the particle in the xy-plane provided. Indicate the direction of motion along the path.

 (b) (4 points) Find the range of $x(t)$ and the range of $y(t)$.

 (c) (4 points) Find the smallest positive value of t for which the x-coordinate of the particle is a local maximum. What is the speed of the particle at this time?

 (d) (4 points) Write down an integral which will compute the distance traveled by the particle from $t = -\pi$ to π.
2. The figure above shows the graphs of the line $x = \frac{5}{3}y$ and the curve C is given by $x = \sqrt{1 + y^2}$. Let S be the region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.

(a) (5 points) Curve C is a part of the curve $x^2 - y^2 = 1$. Show that $x^2 - y^2 = 1$ can be written as the polar equation $r^2 = \frac{1}{\cos^2 \theta - \sin^2 \theta}$.

(b) (4 points) Use the polar equation given above to set up an integral expression with respect to the polar angle θ that represents the area of S.
Name:________________________ Date: ______________ Period: _____
Part III. Multiple-Choice Questions (5 points each; please circle the correct answer.)

1. The length of the curve determined by $x = 2t^3$ and $y = t^3$ from $t = 0$ to $t = 1$ is

(A) $\frac{5}{7}$
(B) $\frac{\sqrt{5}}{2}$
(C) $\frac{3}{2}$
(D) $\sqrt{5}$
(E) 3

2. A particle moves along a path described by $x = \cos^3 t$ and $y = \sin^3 t$. The distance that the particle travels along the path from $t = 0$ to $t = \frac{\pi}{2}$ is

(A) 0.75
(B) 1.50
(C) 0
(D) -3.50
(E) -0.75

3. Find the area inside one loop of the curve $r = \sin 2\theta$.

(A) $\frac{\pi}{16}$
(B) $\frac{\pi}{8}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
(E) π
4. A particle moves on a plane curve so that at any time \(t > 0 \) its position is defined by the parametric equations \(x(t) = 3t^2 - 7 \) and \(y(t) = \frac{4t^2 + 1}{3t} \). The acceleration vector of the particle at \(t = 2 \) is

(A) \(\left(6, \frac{11}{12} \right) \)

(B) \(\left(17, \frac{17}{6} \right) \)

(C) \(\left(12, \frac{47}{12} \right) \)

(D) \(\left(12, \frac{33}{12} \right) \)

(E) \(\left(6, \frac{17}{6} \right) \)

5. The acceleration of a particle is described by the parametric equation \(x''(t) = \frac{t^2}{4} + t \) and \(y''(t) = \frac{1}{3t} \). If the velocity vector of the particle when \(t = 2 \) is \((4, \ln 2) \), what is the velocity vector of the particle when \(t = 1? \)

(A) \(\left(\frac{5}{4}, \frac{1}{3} \right) \)

(B) \(\left(\frac{23}{12}, \frac{\ln 4}{3} \right) \)

(C) \(\left(\frac{23}{12}, \frac{\ln 2}{3} \right) \)

(D) \(\left(\frac{5}{4}, \frac{2}{3} \ln 2 \right) \)

(E) \(\left(\frac{23}{12}, \frac{4}{3} \ln 2 \right) \)
Part IV. Free-Response Questions

1. The figure to the right shows the path traveled by a roller coaster car over the time interval $0 \leq t \leq 18$ seconds. The position and velocity of the car at time t can be modeled parametrically by

<table>
<thead>
<tr>
<th>Position</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(t) = 10t + 4 \sin t$</td>
<td>$x'(t) = 10 + 4 \cos t$</td>
</tr>
<tr>
<td>$y(t) = (20 - t)(1 - \cos t)$</td>
<td>$y'(t) = (20 - t) \sin t + \cos t - 1$</td>
</tr>
</tbody>
</table>

where x and y are measured in meters and t is measured in seconds.

(a) **(4 points)** Find the slope of the path at time $t = 2$. Show the computations that lead to your answer.

(b) **(4 points)** Find the time t at which the car is at its maximum height, and find the speed, in m/sec, of the car at this time.

(c) **(4 points)** For $0 < t < 18$, there are two times at which at the car is at ground level ($y = 0$). Find these two times and write an expression that gives the average speed, in m/sec, of the car between these two times.
2. The curve above is drawn in the \(xy \)-plane and is described by the equation in polar coordinates \(r = \theta + \sin(2\theta) \), \(0 \leq \theta \leq \pi \), where \(r \) is measured in meters and \(\theta \) is measured in radians. The derivative of \(r \) with respect to \(\theta \) is given by \(\frac{dr}{d\theta} = 1 + 2 \cos(2\theta) \).

(a) (5 points) Find the area of the region below the curve, to the left of the \(y \)-axis, and above the \(x \)-axis.

(b) (4 points) For \(\frac{\pi}{3} < \theta < \frac{2\pi}{3} \), \(\frac{dr}{d\theta} \) is negative. What does this fact say about \(r \)? What does this fact say about the curve?

(c) (4 points) Find the value of \(\theta \) in the interval \(0 \leq \theta \leq \frac{\pi}{2} \) that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.