Puxi Campus High School Examinations
Semester Two
June 2010

IB Mathematics HL, Year 1
(Paper 1)

Thursday, June 3rd, 2010
12:45-2:00

Time: 1 hour, 15 minutes

Mr. Surowski

Student Name:__________________________

Instructions to the Candidate

• No food or drink to be brought into examination room.
• No talking during the examination.
• If you have a problem please raise your hand and wait quietly for a teacher.
• Please do not open the examination booklet until directed to do so.
• Please ensure that you have the correct examination in front of you.
• Write your name clearly in the space above when directed to do so.
• At the conclusion of your examination please refrain from speaking until you are outside the exam room as there may still be other examinations still in progress.
• Students are reminded that they are not permitted to leave the examination room early.

Special Instructions:

• Graphic calculators are not allowed on this paper.
• The exam has 12 pages including the cover page.

Good Luck!
Paper 1. 75 minutes; no calculators. Give exact answers where possible; otherwise, unless otherwise instructed, find solutions correct to three decimal places. (Total = 75 points)
1. Assume that x and y are related by the equation $y^2(5 - y) = x^4$. Find the possible values of $\frac{dy}{dx}$ where $y = 4$.

Section A. Short-response questions. Each question is worth 6 marks.
2. Let A and B be events such that $P(A) = \frac{1}{5}$, $P(B \mid A) = \frac{1}{4}$ and $P(A \cup B) = \frac{7}{10}$.

(a) Find $P(A \cap B)$.

(b) Find $P(B)$.

(c) Show that A and B are not independent events.
3. Compute the indefinite integral $\int \frac{\ln x \, dx}{x^3}$
4. \(R \) is the region in the first quadrant under the graph of \(y = \sin 3x, \ 0 \leq x \leq \frac{\pi}{4} \).

Find the \textbf{exact} volume of the solid formed by revolving \(R \) about the \(x \)-axis.
5. Box A contains 6 red balls and 2 green balls. Box B contains 4 red balls and 3 green balls. A cubical fair die with faces numbered 1, 2, 3, 4, 5, 6 is thrown. If 1 or 6 results, a ball is drawn from box A; otherwise a ball is selected from box B.

(a) Calculate the probability that a red ball will be selected.

(b) Given that a red ball is selected, calculate the probability that it comes from box B.
6. Car A is traveling on a straight east-west road in a westerly direction at 60 km/hr. Car B is traveling on a straight north-south road in a northerly direction at 70 km/hr. The two roads intersect at the point \(O\), as indicated in the diagram to the right.

Find the rate of change of the indicated variable \(z\) when Car A is 0.8 km east of \(O\) and Car B is 0.6 km south of \(O\).
7. Let \(f(x) = \frac{x^2 + 5x + 5}{x + 2}, \quad x \neq -2. \)

(a) Find \(f'(x). \)

(b) Solve the inequality \(f'(x) > 0. \)
1. Assume that there is a large box containing \(m \) white ping-pong balls and \(2m \) orange ping-pong balls. We shall be taking ping-pong balls from this box; let \(X \) be the number of white balls selected.

(a) (3 points) Assume that you select \(k \) ping-pong balls from the box, with replacement. Compute \(P(X \geq 2) \) as a function of \(k \).

(b) (1 point) Now assume that you select exactly three balls, again with replacement, and compute \(P(X = 2) \).

(c) (3 points) Select three balls from the above box, without replacement, and show that \(P(X = 2) = \frac{2m(m-1)}{(3m-1)(3m-2)} \).

(d) (2 points) Let \(f(m) = \frac{2m(m-1)}{(3m-1)(3m-2)} \) and show that \(\lim_{m \to \infty} f(m) = \)

(e) (2 points) Why should this be?
2. You are given the graph of \(y = 1 + \frac{1}{x}, \quad x > 0 \). The region \(R \) is bounded by the above graph, the \(y \)-axis, and the lines \(y = 2 \) and \(y = b \), where \(b > 2 \) is a constant.

(a) (5 points) Let \(A \) denote the area of the region \(R \) and solve the equation \(A = \frac{1}{2} \) for \(b \).

(b) (5 points) The region \(R \) is revolved about the \(y \)-axis; let \(V \) denote the volume of the solid so obtained. Solve \(V = \frac{\pi}{2} \) for \(b \).
3. You are given the diagram to the right.

(5 points) Show that

\[
\theta = \arctan \frac{2}{x} - \arctan \frac{1}{x}.
\]

(b) **(7 points)** Hence, or otherwise, find the exact value of \(x\) for which \(\theta\) is a maximum.
High School Examinations
Semester Two 2008

IB Mathematics HL, Year 1
(Paper 2)

Friday, June 6, 2008
2:15—3:45 P.M

Time: 1.5 hours

Teacher: Mr. Surowski

Student Name:___________________________

Instructions to the Candidate
• No food or drink to be brought into examination room.
• Please do not talk during the examination.
• If you have a problem please raise your hand and wait quietly for a teacher.
• Please do not open the examination booklet until directed to do so.
• Please ensure that you have the correct examination in front of you.
• Write your name clearly in the space above when directed to do so.
• At the conclusion of your examination please refrain from speaking until you are outside the exam room as there may still be other examinations still in progress.
• Students are reminded that they are not permitted to leave the examination room early.

Special Instructions:
• Examination must be completed in pen.
• Graphic Calculators are allowed on this paper.
• Please write answers in spaces provided.

Good Luck!
Name: ___________________________ Date: ________ Period: ___

Paper 2. 75 minutes; calculators allowed. Give exact answers where possible; otherwise, unless otherwise instructed, find solutions correct to three decimal places. Solutions found from a graphic display calculator should be supported by suitable working, e.g., if graphs are used to find a solution, you should sketch these as part of your answer. (Total = 78 points)
1. You are given the graph of

\[y = (x^3 - 3x - 1) \sin x, \]
as indicated to the right.

(a) The graph of \(y = f(x) \) has \(x \)-intercepts at the indicated points \(A \) and \(B \). Determine the \(x \)-coordinates of these two points.

(b) Compute the area of the shaded region.
2. (a) Using integration by parts, compute $\int x \cos x \, dx$.

(b) The region R bounded by the curve $y = \cos x$, $0 \leq x \leq \frac{\pi}{2}$, and the x- and y-axes. Using your result of (a) or otherwise, find the exact volume of the solid obtained by revolving R about the y-axis.
3. A box contains 4 red balls and \(n \) green balls. Randomly choose three balls from this box, without replacement, and let \(X \) be the number of red balls selected. Assuming that \(P(X = 2) = \frac{14}{55} \), compute \(n \).
4. Shaft AB is 30 cm long and is attached to a flywheel at A. B is constrained to motion along OX. The radius of the wheel is 15 cm, and the wheel rotates at 100 revolutions per second.

Find the rate of change in angle $\angle ABO$ when angle $\angle AOX$ is 120°.
5. A particle moves along a straight line with velocity given by \(v(t) = \frac{1}{2 + t^2} \), measured in meters per second.

(a) Find the total distance traveled in the first two seconds.

(b) Find an expression for the acceleration at time \(t \).
6. Compute the maximum value of the function \(f(x) = x^2 e^{-x/10} \) on the interval \(0 \leq x < \infty \), and explain why your computed value is the maximum.
7. Use integration by parts to compute \(\int_0^m \sin^{-1} x \, dx \), giving your answer as a function of \(m \).
1. The function \(g \) is defined by setting \(g(x) = \frac{e^x}{\sqrt{x}}, \quad 0 < x \leq 3. \)

(a) (2 points) Sketch the graph of \(y = g(x) \).

(b) (2 points) Compute \(g'(x) \).

(c) (2 points) Write down an expression representing the gradient of the normal to the curve at any point.

Assume now that \(P \) is a point \((x, y)\) on the graph of \(g \), and that \(Q = Q(1, 0) \).

(d) (3 points) Find the gradient of the line \((PQ)\) in terms of \(x \).

(e) (3 points) Find the value of \(x \) for which the line \((PQ)\) is normal to the graph of \(g \). Use this result to determine the distance from the graph of \(g \) to the point \(Q \).
2. Two women, Ann and Bridget, play a game in which they take turns throwing an unbiased six-sided die. The rules are as follows:

- anyone who throws a “1” automatically loses;
- anyone who throws a “6” automatically wins;
- if someone throws anything other than a 1 or a 6, the player gives the die to the other player, and the game continues.

Ann is the first to throw the die.

(a) Let X be the number of rounds in the game (the tosses of the die). Therefore, $X = 2$ means that the game ends on the second toss of the die. Find

(i) (2 points) $P(X = 2)$

(ii) (2 points) $P(X \leq 3)$.

(iii) (3 points) Compute the conditional probability $P(\text{Ann wins} | \text{game lasts no more than three rounds})$.

(b) (5 points) Compute the probability that Ann wins the game.
3. The diagram to the right depicts the graphs of \(y = \ln x \) and \(y = mx \), where \(m \) is a constant.

(a) (4 points) Find the value of \(m \) such that \(y = mx \) is tangent to the graph of \(y = \ln x \).

(b) (3 points) For the value of \(m \) found in part (a), find the coordinates of the point of tangency.

(c) (5 points) Compute the area of the region \(R \) bounded by the \(x \)-axis and the two graphs.