1. Let G_1 and G_2 be groups and form the cartesian product

$$G_1 \times G_2 = \{ (g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2 \}.$$

Define the product simply by setting $(g_1, g_2)(g'_1, g'_2) = (g_1g'_1, g_2g'_2)$, where $g_1, g'_1 \in G_1, g_2, g'_2 \in G_2$. Show that relative to this binary operation, $G_1 \times G_2$ is a group. Under what circumstances is the group $G_1 \times G_2$ an abelian group?
2. Consider the multiplicative group $G = \mathbb{Z}_{17}^\times = \mathbb{Z}_{17} - \{0\}$.

(a) Find the order of the element 7.

(b) For each divisor of 16, find an element of that order.
3. Let S be the group of permutations of the set $\{1, 2, 3, 4\}$, relative to composition as the binary operation.

(a) Is S abelian? Explain.

(b) Find a noncyclic subgroup of order 4.

(c) Find a subgroup of order 6.
4. Let G be a group.

(a) Define the center Z of the group G to be

$$Z = \{ z \in G \mid zg = zg \text{ for all elements } g \in G \}.$$

In other words, the center Z consists of all elements of G that commute with all other elements of G.

Show that Z is an abelian subgroup of G.

(b) Now let $x \in G$ be a fixed element of G. Define the centralizer of x by setting

$$C(x) = \{ z \in G \mid zx = xz \}.$$

That is, the centralizer of x consists of all elements of G that commute with x.

Show that $C(x)$ is a subgroup of G.
5. Let G be the group of permutations of the set $\{1, 2, 3\}$ and let H be the cyclic group generated by τ, where

$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

Define the relation “$\equiv \pmod{H}$” by setting $g_1 \equiv g_2 \pmod{H} \iff g_2^{-1}g_1 \in H$, $g_1, g_2 \in G$.

(a) Write down the equivalence class containing the element x, where

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$

(b) How many equivalence classes in G relative to $\equiv \pmod{H}$ are there?
6. Let G be an abelian group and define the mapping $f : G \to G$ by setting $f(g) = g^2$, for all $g \in G$.

(a) Show that f is a homomorphism of G into itself.

(b) Now suppose that G is finite of odd order. Show that f is actually an isomorphism of G onto itself.
7. Let G_1 and G_2 be groups and let $f : G_1 \to G_2$ be a **surjective** homomorphism. Show that if G_1 is abelian, then G_2 is also abelian.