A SYSTEM OF SIMULTANEOUS CONGRUENCES ARISING FROM TRINOMIAL EXPONENTIAL SUMS

TODD COCHRANE, JEREMY COFFELT, AND CHRISTOPHER PINNER

ABSTRACT. For a prime p and positive integers $l < k < h < p$ with $d = (h, k, l, p - 1)$, we show that M, the number of simultaneous solutions x, y, z, w in \mathbb{Z}_p^* to $x^h + y^h = z^h + w^h$, $x^k + y^k = z^k + w^k$, $x^l + y^l = z^l + w^l$, satisfies

$$M \leq 3d^2(p - 1)^2 + 25hkl(p - 1).$$

When $hkl = o(pd^2)$ we obtain a precise asymptotic count on M. This leads to the new twisted exponential sum bound

$$\left| \sum_{x=1}^{p-1} \chi(x)e^{2\pi if(x)/p} \right| \leq 3d^{12}p^{12} + \sqrt{5}(hkl)^{\frac{1}{4}}p^{\frac{5}{8}},$$

for trinomials $f = ax^h + bx^k + cx^l$, and to results on the average size of such sums.

1. Introduction

For a prime p, integer polynomial f and multiplicative character $\chi \mod p$, define the complete exponential sum

$$S(\chi, f) = \sum_{x=1}^{p-1} \chi(x)e^{2\pi if(x)/p}.$$

Here we consider the case of trinomials

$$(1.1) \quad f = ax^h + bx^k + cx^l, \quad 0 < l < k < h < p, \quad p \nmid abc.$$

From Weil [6]

$$|S(\chi, ax^h + bx^k + cx^l)| \leq hp^\frac{1}{2},$$

$$(1.2) \quad |S(\chi, ax^h + bx^k + cx^l)| \leq 9^{\frac{1}{2}}(hkl)^{\frac{1}{2}}p^\frac{5}{8},$$

$$(1.3) \quad |S(\chi, ax^h + bx^k + cx^l)| \leq (kl)^{\frac{1}{4}}p^{\frac{5}{8}}.$$

Akulinčev [1] has also given a bound for a special class of trinomials.

The result (1.3) arises from the [3] bound

$$(1.4) \quad |S(\chi, ax^h + bx^k + cx^l)| \leq p^\frac{5}{8}M^{\frac{1}{4}},$$

\textit{Date:} September 6, 2009.
\textit{1991 Mathematics Subject Classification.} 11L07; 11L03.
\textit{Key words and phrases.} exponential sums.
where M denotes the number of solutions x, y, z, w in \mathbb{Z}_p^* to
\[
\begin{align*}
 x^h + y^h &= z^h + w^h, \\
 x^k + y^k &= z^k + w^k, \\
 x^l + y^l &= z^l + w^l.
\end{align*}
\]

It is straightforward that M is also the average value of $|S(\chi_0, f)|^4$ as a, b, c run through all of \mathbb{Z}_p, where χ_0 is the principal character on \mathbb{Z}_p. Ignoring the first equation it is not hard to show that
\[
(1.5) \quad M \leq (kl)(p - 1)^2,
\]
giving (1.3). Utilising the first equation we showed in [3] the slight refinement
\[
(1.6) \quad M \leq \frac{d}{(k, l)}(kl)(p - 1)^2,
\]
where
\[
d = (h, k, l, p - 1).
\]

Here we obtain a more precise bound, giving an asymptotic count on M when $(hkl)/d^2 = o(p)$. We distinguish by M^* the number of solutions with
\[
\begin{align*}
 x^d &= z^d, \quad y^d = w^d, \quad \text{or} \quad x^d = w^d, \quad y^d = z^d,
\end{align*}
\]
and when $2d|(p - 1)$ and $h/d, k/d, l/d$ are all odd
\[
x^d = -y^d, \quad z^d = -w^d.
\]

Observe that
\[
M^* = \begin{cases}
3d^2(p - 1)^2 - 3d^3(p - 1) & \text{if } 2d|(p - 1) \text{ and } l/d, k/d, h/d \text{ all odd}, \\
2d^2(p - 1)^2 - d^3(p - 1) & \text{otherwise}.
\end{cases}
\]

We show here

Theorem 1.1. For any prime p and integers $0 < l < k < h < p$,
\[
0 \leq M - M^* \leq (17h + 8k - 19l)kl(p - 1).
\]

Thus, the average value of $|S(\chi_0, f)|^4$ is on the order d^2p^2 when $hkl \ll d^2p$. We also have the upper bound
\[
(1.7) \quad M \leq 3d^2(p - 1)^2 + 25(hkl)(p - 1),
\]
for arbitrary h, k, l. In the trivial cases $l = d$ and $k = 2d$ or $3d$ straightforwardly $M = M^*$. Otherwise (1.7) certainly improves upon (1.5) when $h < p/100$, and (1.6) as long as $h(k, l)/d < p/100$. From (1.4) and (1.7) we deduce the trinomial exponential sum bound:

Corollary 1.1. For any trinomial (1.1) and multiplicative character χ (mod p),
\[
|S(\chi, ax^h + bx^k + cx^l)| \leq 3\frac{1}{2}d\frac{1}{2}p\frac{1}{2} + \sqrt{5}(hkl)^{\frac{1}{2}}p^{\frac{3}{8}}.
\]

The bound is nontrivial provided $d \ll p^{1/4}$ and $hkl \ll p^{3/2}$ and improves on the Mordell type bounds (1.2), (1.3) when $hkl \gg d^{1/2}p^{3/8}$, and on the Weil bound when $h \gg \max\{d^{1/2}p^{3/8}, (kl)^{1/3}p^{1/6}\}$. The upper bound in (1.7) is essentially best possible, although the constant 25 can likely be sharpened. The following example shows that a bound of the form
\[
M - M^* \leq \theta(hkl)(p - 1)
\]
can not hold with a fixed $\theta < 1$.
Remark 1. We prove this in Section 3.

It is interesting to note that upper bounds of the type (1.3) and Corollary 1.1 are actually much sharper than the bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials.

Remark 2. By Weil’s fundamental work we know that $\chi \neq \chi_0$, to see this simply replace x by $xu^\frac{p-1}{m}$ where $\chi^{\frac{p-1}{m}}(u) \neq 1$.

If $\chi \neq \chi_0$ then $\chi = \chi_1^l$ for some character χ_1 and we obtain the following expression for the average value of $|S(\chi,f)|^4$ over the $f = ax^h + bx^k + cx^l$:

$$p^{-3} \sum_{a,b,c \in \mathbb{Z}_p} |S(\chi,f)|^4 = \sum_{\mathcal{M}} \chi(xyz^{-1}w^{-1}) = \sum_{\mathcal{M}^*} \chi_1(x^{d}y^{d}z^{-d}w^{-d}) + \sum_{\mathcal{M} \setminus \mathcal{M}^*} \chi(xyz^{-1}w^{-1})$$

$$= 2d^2(p - 1)^2 + 25\theta hklp$$

with $|\theta| \leq 1$, unless $2d|(p - 1)$, l/d, k/d, h/d are all odd, and $\chi^2 = \chi_0$, in which case the constant 2 on the right is replaced by 3; here \mathcal{M} and \mathcal{M}^* are the sets of points contributing to M and M^* respectively.

Using the Hölder inequality,

$$N^{-1} \left(\sum_{i=1}^{N} a_i \right)^2 \leq \left(\sum_{i=1}^{N} a_i^2 \right)^{2/3} \leq \left(\sum_{i=1}^{N} a_i \right)^{2/3} \left(\sum_{i=1}^{N} a_i^4 \right)^{1/3},$$

and the fact that

$$p^{-3} \sum_{a,b,c \in \mathbb{Z}_p} |S(\chi,f)|^2 = d(p - 1),$$

for $\chi^{\frac{p-1}{m}} = \chi_0$, we obtain the following estimate for the average value of $|S(\chi,f)|$:

$$\frac{1}{\sqrt{2}} \sqrt[3]{d(p - 1)} \left(1 - \frac{25\theta hklp}{4d^2(p - 1)^2} \right) \leq p^{-3} \sum_{a,b,c \in \mathbb{Z}_p} |S(\chi,f)| \leq \sqrt[3]{d(p - 1)}$$

for $hkl \ll d^2p$. Again the constant $\frac{1}{\sqrt{2}}$ on the left must be replaced by $\frac{1}{\sqrt{3}}$ in the exceptional case mentioned above.

Remark 2. By Weil’s fundamental work we know that $S(\chi,f) = -\omega_1 - \cdots - \omega_k$ for some complex numbers ω_i, each of modulus \sqrt{p}, and so if the arguments of the ω_i are randomly distributed one might expect an upper bound of the type $|S(\chi,f)| \ll (hp)^{\frac{1}{2} + \epsilon}$.

It is interesting to note that upper bounds of the type (1.3) and Corollary 1.1 are actually much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials. For instance, from (1.3) we have the uniform upper bound, much sharper than this bound for large classes of trinomials.

$$|S(\chi,ax^h + bx^k + cx^l)| \leq 2^{1/4} p^{7/8},$$

which is sharper than \sqrt{hp} for $h \gg p^{3/4}$. It would be of interest to understand how the extra cancellation in the sum of the ω_i is occurring in such cases.
2. Proof of Theorem 1

Dividing by \(w \) we can clearly write \(M = (p-1)|M_0| \) where \(M_0 \) denotes the solutions \(x, y, z \) in \(\mathbb{Z}_p \) to

\[
\begin{align*}
 x^h + y^h - z^h - 1 &= 0, \\
x^k + y^k - z^k - 1 &= 0, \\
x^l + y^l - z^l - 1 &= 0.
\end{align*}
\]

(2.1)

We write \(M^*_0 \) for the solutions to (2.1) with

\[
x^h = x^k = x^l = 1, \quad y^h = z^h, \quad y^k = z^k, \quad y^l = z^l,
\]
or

\[
y^h = y^k = y^l = 1, \quad x^h = z^h, \quad x^k = z^k, \quad x^l = z^l,
\]
or

\[
x^h = -y^h, \quad x^k = -y^k, \quad x^l = -y^l, \quad z^h = z^k = z^l = -1,
\]

the last of these contributing no solutions unless \(h/d, k/d, l/d \) are all odd and \((p-1)/d \) is even. Straightforwardly these correspond to solutions with respectively \(x^h = 1, y^h = z^h, \) or \(y^d = 1, x^d = z^d, \) or \(z^d = -1, x^d = -y^d, \) and hence \(M^* = |M^*_0|/(p-1) \).

We recall Theorem 1 of Wooley [7]: If \(f_i(x_1, \ldots, x_k) \) are polynomials in \(\mathbb{Z}[x] \) of degree \(d_i \), then the number of simultaneous solutions \(x_1, \ldots, x_k \) in \(\mathbb{Z}_p \) to \(f_i(x_1, \ldots, x_k) = 0, i = 1, \ldots, k \) with \(\det(\partial^2 F_i/\partial x^j \partial x^j) \neq 0 \) is bounded by \(d_1 \cdots d_k \).

Hence we have

\[M - M^* \leq (hkl)(p-1) + |M_1|(p-1) \]

where \(M_1 \) denotes the solutions to (2.1), not in \(M^*_0 \), and with

\[
\begin{pmatrix}
 x^h & y^h & z^h \\
x^k & y^k & z^k \\
x^l & y^l & z^l
\end{pmatrix}
\]

(2.2)

Thus for these solutions we obtain the additional equation

\[
F_1 := x^h(y^h - y^l) + x^k(y^k - y^l) + x^l(y^l - y^k) = 0.
\]

(2.3)

Since \(z^h = x^h + y^h - 1 \) and \(z^l = x^l + y^l - 1 \) the solutions to (2.1) must also satisfy

\[
F_2 := (x^h + y^h - 1)^{c/e} - (x^l + y^l - 1)^{c/e} = 0
\]

where \(c = (l, k) \). Observe that for a given pair \(x, y \) the number of solutions \((x, y, z) \) is at most \(d \) (we obtain \(z^h, z^k, z^l \) and hence \(z^d \) from (2.1)). Thus applying Wooley again to the pair \((xy)^{-1}F_1, F_2 \) we obtain that

\[
|M_1| \leq (h + k - 2l)\frac{M_2}{c}d + |M_2|
\]

where \(M_2 \) denotes the solutions in \(M_1 \) which additionally have

(2.4)

\[
\Delta := y^h - y^l
\]

and

(2.5)

\[
U := (h-k)(y^h - y^l), \quad V := (l-h)(y^h - y^k), \quad H := (k-h)y^{k+h} + (l-k)y^{k+l} + (h-l)y^{h+l}, \quad L := (k-l)y^h - (h-l)y^k + (h-k)y^l.
\]
and, noting the highest and lowest degree terms,

(2.6) \[A := (y^l - 1)H + y^lU \Delta = (h - k)y^{k+h} + (k - l)y^{k+2l} + \cdots + (k - l)y^{k+l} + (h - k)y^{3l}, \]

(2.7) \[B := -(y^h - 1)H + y^hU \Delta = -(k - l)y^{k+h+l} + \cdots + (k - l)y^{k+l}, \]

(2.8) \[C := (y^k - 1)H - y^kV \Delta = (k - l)y^{2k+h} + \cdots + (k - l)y^{l+k}. \]

We note the relations

(2.7) \[V y^l + U y^h + H = 0, \]

(2.8) \[A y^{k-l} + B(1 + y^{k-l}) + C = 0, \]

and

(2.9) \[B^2 - AC = (A + B)(Ay^{k-l} + B), \quad A + B = -\Delta Ly^l, \quad B + Ay^{k-l} = -\Delta H y^{-l}, \]

as can be readily checked using Maple. Using the relation \(F_1 = 0 \) we have

\[
x \frac{\partial F_1}{\partial x} = hx^h(y^k - y^l) + kx^h(y^l - y^h) + lx^l(y^h - y^k)
= x^kU + x^lV,
\]

\[
\Delta y \frac{\partial F_1}{\partial y} = (y^k - y^l) \left(x^k(ky^h - ly^l) + x^h(ly^k - hy^l) + x^l(hy^k - ky^h) \right)
= x^k \left((y^k - y^l)(ly^k - hy^l) - (y^l - y^k)(ky^h - ly^h) \right) + x^l \left((y^k - y^l)(hy^k - ky^h) - (y^h - y^l)(ky^l - ly^l) \right)
= (x^k - x^l)H.
\]

Using that \(z^k = x^k + y^k - 1 \) and \(z^l = x^l + y^l - 1 \) gives

\[
x \frac{\partial F_2}{\partial x} = \frac{k}{e} \frac{z^{kl/e}}{(x^k + y^k - 1)^{l-1}kx^k - \frac{k}{e}(x^l + y^l - 1)^{l-1}lx^l}
= \frac{k}{e} \frac{z^{kl/e}}{(x^k + y^k - 1)(x^l + y^l - 1)} \left(x^k(x^l + y^l - 1) - x^l(x^k + y^k - 1) \right)
= \frac{k}{e} \frac{z^{kl/e}}{z^{kl/e - k-l}} \left(z^k(y^l - 1) - z^l(y^k - 1) \right),
\]

\[
\Delta y \frac{\partial F_2}{\partial y} = \Delta \frac{k}{e} \frac{z^{kl/e}}{(x^k + y^k - 1)(x^l + y^l - 1)} \left(y^k(x^l + y^l - 1) - y^l(x^k + y^k - 1) \right)
= -\frac{k}{e} \frac{z^{kl/e - k-l}}{z^{kl/e - k-l}} \Delta \left(z^k y^l - z^l y^k \right).
\]

Thus we obtain from the determinant (2.3) that

(2.10) \[\left(z^k(y^l - 1) - z^l(y^k - 1) \right)(x^k - x^l)H + \Delta \left(x^kU + x^lV \right) \left(z^k y^l - z^l y^k \right) = 0. \]

Dividing by \((xz)^l \), and using (2.6) for the coefficients obtained, gives one more equation

(2.11) \[F_4 := A(xz)^{k-l} + B(x^{k-l} + z^{k-l}) + C = 0. \]

From (2.8) this can also be written

(2.12) \[F_3 = A((xz)^{k-l} - y^{k-l}) + B(x^{k-l} + z^{k-l} - 1 - y^{k-l}) = 0. \]

Notice that the solutions in \(M_0^l \) with \(\Delta \neq 0 \) have \(\{x^{k-l}, z^{k-l}\} = \{1, y^{k-l}\} \). These are precisely the solutions to (2.12) which are independent of the \(y \) dependence \(A, B \). From (2.11) we obtain the relation

(2.13) \[z^{k-l}(Ax^{k-l} + B) = -(Bx^{k-l} + C). \]
From (2.6) it is clear that \(y^{l_{\min(k, 2l)}} \) divides \(F_3 \). Applying Wooley again to \(F_3/y^{l_{\min(k, 2l)}} \), \(x^k + y^k - z^k - 1, x^l + y^l - z^l - 1 \), we obtain:

\[
|M_2| \leq (h + k - 5l + 2 \max \{k, 2l\}) kl + |M_3| + |M_4|
\]

where \(M_3 , M_4 \) are solutions \(M_2 \) with

\[
(2.14) \quad \det \begin{pmatrix}
\frac{\partial F_3}{\partial x} & -\frac{\partial F_3}{\partial z} & y \\
\frac{\partial F_3}{\partial y} & \frac{\partial F_3}{\partial x} & z \\
\frac{\partial F_3}{\partial y} & -\frac{\partial F_3}{\partial z} & x
\end{pmatrix} = 0,
\]

with \(\Delta(Ax^{k-l} + B) = 0 \) for \(M_3 \) and \(\Delta(Ax^{k-l} + B) \neq 0 \) for \(M_4 \). Observe that for each \(y \) there will be at most \(kl/e \) values of \(x \) (using \(F_2 = 0 \) as long as at least one of \(y^h - 1 \) and \(y^l - 1 \) is non-zero, and using \(F_1 = 0 \) to obtain \(x^{k-l} = 1 \) when \(y^h = y^l = 1 \) and \(y^{\pm h} \neq 1 \) since we are not in \(M_0^* \)). If \(Ax^{k-l} + B = 0 \), then \(Bx^{k-l} + C = 0 \) and, eliminating \(x^{k-l} \) we obtain \(B^2 - AC = 0 \). From (2.9) this gives \(\Delta HL = 0 \) and the number of values of \(y \) in \(M_3 \) is at most \((k-l) + (h-l) \). Hence

\[
|M_3| \leq (2h + k - 3l) \frac{kl}{e} d.
\]

For \(M_4 \) observe from (2.12) that if \(x^{k-l} = 1 \) then \(z^{k-l} = y^{k-l} \) (we know that \(A + B \neq 0 \) else we would be in \(M_3 \)). Since \(y^{k-l} \neq 1 \) in \(M_4 \), the relations

\[
(2.15) \quad z^l = \frac{x^{k-l}(y^l - 1) - (y^{k-l})}{x^{k-l} - z^{k-l}}, \quad x^l = \frac{x^{k-l}(y^l - 1) - (y^{k-l})}{x^{k-l} - z^{k-l}},
\]

arising from the \(k \) and \(l \) equations of (2.1), then give \(z^l = y^l, x^l = 1, z^k = y^k, x^k = 1 \). But from \(F_1 = \Delta(x^h - 1) = 0 \) this forces \(x^h = 1, y^h = z^k \) and we obtain no solutions not in \(M_0^* \). Likewise if \(x^{k-l} = y^{k-l} \) then \(Ay^{k-l} + B \neq 0 \) and \(z^{k-l} = 1 \), and \(z^l = 1, x^l = y^l, x^k = y^k, A_1 = \Delta(x^h + y^h) = 0 \) giving \(x^h = y^h \), and we obtain no solutions not in \(M_0^* \).

Hence, writing \(X = x^{k-l} \), \(Y = y^{k-l} \), we may assume henceforth for points in \(M_4 \) that

\[
(2.16) \quad X \neq 1, \quad Y \neq Y \quad \text{and} \quad k \neq 2l.
\]

The assumption \(k \neq 2l \) follows from the observation that if \(k = 2l \) then \((x^l - 1)(y^l - 1) = 1 \) (as in (3.1)) and so either \(X = 1 \) or \(Y = 1 \), the latter implying \(\Delta = 0 \) whence we are in \(M_3 \). Defining \(A_1 := \frac{\partial A}{\partial x} ^X, B_1 := \frac{\partial B}{\partial y} ^X, C_1 := \frac{\partial C}{\partial y} ^X \), using (2.13) to eliminate \(z^{k-l} \), and invoking relation (2.9), we have

\[
\frac{x}{(k-l)} \frac{\partial F_3}{\partial x} = A_1(xz)^{k-l} + B_1xz^{k-l} = \frac{(B^2 - AC)X}{AX + B} = \frac{HL\Delta^2 X}{AX + B},
\]

\[-\frac{z}{(k-l)} \frac{\partial F_3}{\partial z} = -(A_1(xz)^{k-l} + B_1xz^{k-l}) = BX + C,
\]

and using successively (2.8), (2.13) to eliminate \(z^{k-l} \) and (2.8) again,

\[-\frac{y}{(k-l)} \frac{\partial F_3}{\partial y} = A_1(xz)^{k-l} + B_1(xz^{k-l} + z^{k-l}) + C_1
\]

\[= A_1((xz)^{k-l} - y^{k-l}) + B_1(xz^{k-l} + z^{k-l} - 1 - y^{k-l}) + (B + C)
\]

\[= (B_1A - BA_1)\frac{(X - 1)(X - Y)}{AX + B} + (B + C).
\]

Thus from the determinant condition (2.14), and writing \(Xz^l - z^k = X(y^l - 1) - (y^k - 1) \), we see that

\[-HL\Delta^2 X \left(\frac{z^k y^l - z^l y^k}{x^l} \right) \]
equals
\[-(BX + C)(AX + B)(Xy^i - y^k) + [(B_1 A - A_1 B)(X - 1)(X - Y) + (B + C)(AX + B)] \left(X(y^i - 1) - (y^k - 1) \right) = (X - 1) \left[(B_1 A - A_1 B)(X - Y) \left(X(y^i - 1) - (y^k - 1) \right) - (AX + B) \left(By^i(X - Y) + (B + C) \right) \right], \]
while from (2.10)
\[-\Delta(XU + V) \left(z^i y^i - z^k y^k \right) = H(X - 1)(X(y^i - 1) - (y^k - 1)).\]
Thus since \(X \neq 1 \) we must have \(T_1 = T_2 \) where
\[T_1 := H^2 L \Delta X \left((y^i - 1) - (y^k - 1) \right) \]
and, using from (2.8) and (2.9) that \(-(B + C)(AY + B) = Y(A + B)(AY + B) = YHL\Delta^2,\)
\[T_2 := (XU + V) \left[(B_1 A - A_1 B)(X - Y) \left(X(y^i - 1) - (y^k - 1) \right) - (AX + B) \left(By^i(X - Y) + (B + C) \right) \right] = (XU + V) \left\{ (X - Y) \left[(B_1 A - A_1 B)(X(y^i - 1) - (y^k - 1)) - By^i(AX + B) - (B + C)A \right] + YHL\Delta^2 \right\}. \]
Now
\[T_1 = H^2 L \Delta X \left((y^i - 1)(X - Y) - y^{-i}\Delta \right) = (X - Y)T_3 - H^2 L \Delta^2 Y y^{-l} \]
with
\[T_3 := H^2 L \Delta \left((y^i - 1)X - y^{-i}\Delta \right). \]
Also, using (2.7),
\[T_2 = (X - Y)T_4 - H^2 L \Delta^2 Y y^{-l} \]
with
\[T_4 := \left[(B_1 A - A_1 B) \left(X(y^i - 1) - (y^k - 1) \right) - By^i(AX + B) - (B + C)A \right] (XU + V) + YHL\Delta^2 U \]
where
\[a := \left((B_1 A - A_1 B)(y^i - 1) - ABy^i \right) / \Delta, \quad b := \left((B_1 A - A_1 B)(y^k - 1) + B^2 y^i + (B + C)A \right) / \Delta \]
(one can verify by Maple that \(a \) and \(b \) are polynomials). Since \(X \neq Y \) we obtain \(T_3 = T_4 \), a quadratic relation in \(X \), and after multiplying by \((k - l)\),
\[\alpha x^{2(k-l)} + \beta x^{k-l} + \gamma = 0, \]
with (using Maple to expand and identify the highest and lowest degree terms)
\[\alpha := (k - l)Ua = (h - k)^2(k - l)(k - 2l)y^{k+4l}(y^{3k-2l} + \cdots + 1), \]
\[\beta := (k - l)(Va - Ub - H^2 L(y^i - 1)) = -(h - k)^2(k - l)(k - 2l)y^{k+4l} \left(y^{3k+k-3l} + \cdots + 1 \right), \]
\[\gamma := (k - l)(-Vb + H^2 L \Delta y^{-i} + YHLU\Delta) = (h - l)(k - h)(k - l)y^{3l+2k}(y^{3k-2l} + \cdots + 1). \]
Observing that \(B\beta = C\alpha + A\gamma \) (as can be checked on Maple), the relation (2.13) and quadratic (2.17) yield the equations
\[F_4 := \alpha(xz)^{k-l} - \gamma = 0 \]
and
\[\alpha \left(x^{k-l} + z^{k-l} \right) = -\beta. \]
One can use Maple to obtain explicit expressions for the polynomials \(\alpha \) and \(\gamma \)
\[\alpha = (h - k)(y^h - y^i)y^j f(h, k, l), \]
\[\gamma = (h - l)(y^h - y^k)y^j f(h, l, k), \]
with
\[f(h, k, l) = (k - l)(h - k)(k - 2l) \left(y^{2h+k+l} - y^{k+2l} \right) + k(h - l)(k - l) \left(y^{2h+k+l} - y^{2k+l} \right) \\
+ (2h^3 + 2k^3 + 14hkl - kl^2 - hl^2 - 3hk^2 - 3h^2k - 5h^2l - 5k^2l) \left(y^{h+k+2l} - y^{h+k+l} \right) \\
+ h(h - l)(k - l) \left(y^{2k+l} - y^{2h+l} \right) + (2l - h)(h - l)(h - k) \left(y^{h+k+2l} - y^{2k+l} \right) \\
+ (l + k - h)(h - l)(h - k) \left(y^{h+3l} - y^{k+2l} \right) - (h + l - k)(h - k)(k - l) \left(y^{h+3l} - y^{2h+k} \right). \]

Thus applying Wooley again to \(F_4/y^{k+l} \), \(x^k + y^k - z^k - 1, x^l + y^l - z^l - 1 \), we have
\[|M_4| \leq (3h + 2k - 4l)kl + |M_5| \]

where solutions in \(M_5 \) have an additional zero determinant (of the form (2.14) with \(F_4 \) in place of \(F_3 \)).

Writing \(\alpha_1 = \frac{y}{(k-l)} \frac{\partial F_4}{\partial h}, \gamma_1 = \frac{y}{(k-l)} \frac{\partial F_4}{\partial y}, \) we have
\[\alpha \frac{\partial F_4}{(k-l)} \frac{x}{\partial x} = \alpha^2 (xz)^{k-l} = \gamma \alpha, \]
\[-\alpha \frac{\partial F_4}{(k-l)} \frac{z}{\partial z} = -\alpha^2 (xz)^{k-l} = -\gamma \alpha, \]
\[\alpha \frac{\partial F_4}{(k-l)} \frac{y}{\partial y} = \alpha (\alpha_1 (xz)^{k-l} - \gamma_1) = \alpha_1 \gamma - \alpha \gamma_1, \]

and thus for solutions in \(M_5 \), we gain the relation
\[(2.20) \quad \alpha \gamma \left((z^k y^l - z^l y^k) + (x^k y^l - x^l y^k) \right) + (\alpha_1 \gamma - \alpha \gamma_1)(x^k z^l - x^l z^k) = 0. \]

When \(z^{k-l} \neq x^{k-l} \) and \(\alpha \neq 0 \) we use (2.15) to rewrite \((z^k y^l - z^l y^k) + (x^k y^l - x^l y^k)\)
as
\[z^l x^l \left(\frac{z^{k-l} y^l - y^k}{x^l} + \frac{x^{k-l} y^l - y^k}{z^l} \right) \]
\[= (x^l z^l - z^l x^l) \left(\frac{z^{k-l} y^l - y^k}{x^l} \right) \left((z^{k-l} y^l - y^k)^2 - (x^{k-l} y^l - y^k)^2 \right) \]
\[= (x^l z^l - z^l x^l) \frac{T_5}{T_6} \]
where using (2.18) and (2.19)
\[T_5 := 2\gamma y^l(y^l - 1) + \beta(y^k(y^l - 1) + y^l(y^k - 1)) + 2\alpha y^k(y^k - 1), \]
\[T_6 := \gamma(y^l - 1)^2 + \beta(y^l - 1)(y^k - 1) + \alpha(y^k - 1)^2. \]

Thus, by (2.20)
\[F_5 := \alpha \gamma T_5 + (\alpha_1 \gamma - \alpha \gamma_1) T_6 = 0, \]
a relation which only depends upon the variable \(y \).

If \(\alpha = 0 \) then \(\gamma = 0 \) (from (2.18) both are zero or non-zero) and \(y \) will still be a zero of \(F_5 \). If \(z^{k-l} = x^{k-l} \) and \(\alpha \neq 0 \) then from (2.19) and (2.18)
\[(2.21) \quad x^{k-l} = -\beta/2\alpha, \quad \beta^2 - 4\alpha \gamma = 0, \]
while (2.20) gives \(\alpha \gamma \left(z^l x^l \right) \left(x^{k-l} y^l - y^k \right) = 0 \) and, since \(z^{k-l} \neq y^{k-l} \), we must have \(x^l = -z^l, x^k = -z^k, \) and \(2x^l = 1 - y^k, 2x^l = 1 - y^l \). Hence \(T_6 = 4x^2 \gamma(y + \beta x^{2k-l} + 2\alpha x^{2(k-l)}) \) by (2.17), and \(T_5 = 8x^2 \gamma + \beta x^{2k-l} + 2\alpha x^{2(k-l)} - 2z^l \gamma + (1 + x^{2l}) + 2\alpha x^{2k-l} = 0 \), by (2.17) and (2.21), and these solutions are also included in \(F_5 = 0 \). Hence all solutions in \(M_5 \) have \(y \) value satisfying \(F_5 = 0 \), where for each \(y \) there are at most \(\frac{kl}{\sqrt{d}} \) choices of \(x \) and \(z \) as we saw in the bound for \(M_5 \).
Again appealing to Maple we obtain
\[F = -l(l-h)(k-h)^5(2l-k)(l-k)^3(l+h-k)\Delta y^{4k+11l} \left(y^{9h+k-7l} + \cdots + 1 \right), \]
a nonzero polynomial by our assumption (2.16). Since the values where \(\Delta = 0 \) are already accounted for in \(M_0 \) and for each choice of \(y \) there are at most \(kl \) choices for \((x, z) \) (as noted above in the estimate for \(|M_2| \) we have finally
\[|M_5| \leq (9h + k - 7l)kl, \]
and
\[M - M^* \leq (17h + 8k - 19l)kl(p - 1). \]

3. Proof for the Example.

Let \(m \) be a positive integer with \(m \geq 5 \), \(p \) a prime with \(p \equiv 1 \pmod{m} \), and \((h, k, l) = (2(p - 1)/m, (p - 1)/m, 1) \).

Clearly \(M = (p - 1)M_0 \) where \(M_0 \) counts the solutions \(x, y, z \in \mathbb{Z}_p^* \) to
\[x^k + y^k = z^k + 1, \quad x^{2k} + y^{2k} = z^{2k} + 1, \quad x + y = z + 1. \]

From the first two equations we have \(z^k = x^k y^k \) and \((x^k - 1)(y^k - 1) = 0 \) and so \(x^k = 1 \), \(y^k = z^k \) or \(x^k = z^k \). Now if \(x^k = 1 \), \(y^k = z^k \) then \(y = \xi z \) for the \(k \) values \(\xi \) with \(\xi^k = 1 \), the remaining equation requiring \((x + z\xi) = (z + 1) \). Thus for \(\xi = 1 \) we have the \((p - 1) \) solutions \(x = 1, z = y \), and for the \((k - 1) \) remaining \(\xi \neq 1 \) we have solutions \(z = (x - 1)/(1 - \xi), y = \xi z \) for the \((k - 1) \) values of \(x \neq 1 \) with \(x^k = 1 \). A similar count is obtained when \(y^k = 1 \) and \(x^k = z^k \). Hence
\[M_0 = 2(p - 1) + 2(k - 1)^2 - M', \]
where \(M' \) is the number of solutions to \(x + y = z + 1 \) with \(x^k = y^k = z^k = 1 \), so that \(m^2 M' \) equals the number of solutions to \(x^m + y^m = z^m + 1 \). By Theorem 6.37 of [4]
\[m^2 M' \leq p^2 + (m - 1)^3 p, \]
and, for \(m \geq 5 \),
\[M_0 \geq 2(k - 1)^2 + 2(p - 1) - p^2/m^3 - p \approx \left(2 - \frac{1}{m} \right) k^2. \]

References

Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: cochrane@math.ksu.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: jcoffelt@math.ksu.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: pinner@math.ksu.edu