On Representing the Multiple of a Number by a Quadratic Form

BY TODD COCHRANE

Abstract.

Let \(Q(x) \) be a nonsingular quadratic form over \(\mathbb{Z} \) in \(n \geq 3 \) variables. In Theorem 1 we show that for any positive integer \(m \), there exists a nonzero integer \(\lambda \), with \(|\lambda| < c_1(Q) \), such that \(\lambda m \) is represented by \(Q \) over \(\mathbb{Z} \), where \(c_1(Q) \) is a constant depending only on \(Q \). As a corollary we deduce that the congruence \(Q(x) \equiv 0 \pmod{m} \) has a nonzero solution \(x \) with \(\max |x_i| \leq c(Q)m^{\frac{1}{2}} \). In Theorem 2 we show, (among other things), that for any primitive indefinite form in \(n \geq 4 \) variables and any \(m \) the equation \(Q(x) = \lambda m \) is solvable for some nonzero \(\lambda \) with \(|\lambda| < c_2(n)|d|^{\frac{2n-6}{2n-2}} \), where \(c_2(n) \) is a constant depending only on \(n \), and \(d \) is the determinant of \(Q \). The exponent on \(|d| \) is best possible.
On Representing the Multiple of a Number by a Quadratic Form

BY TODD COCHRANE

Let \(Q(x) = \sum_{i \leq j} c_{ij}x_ix_j \) be a quadratic form in \(n \) variables with integral coefficients. Write \(Q(x) = \frac{1}{2}x^T A x \) where \(A = [a_{ij}] \) is a symmetric \(n \times n \) matrix with entries \(a_{ii} = 2c_{ii} \) and \(a_{ij} = c_{ij} \) for \(i < j \). Set \(d = d(Q) = \det A \). We say \(Q \) is primitive if the coefficients \(c_{ij} \) are relatively prime, and nonsingular if \(d \neq 0 \). This paper addresses the following problem: Given a positive integer \(m \) what is the smallest nonzero integer \(\lambda \) (in absolute value) such that \(\lambda m \) is represented over \(\mathbb{Z} \) by \(Q \), that is
\[
Q(x) = \lambda m
\]
is solvable over \(\mathbb{Z} \). Grant [6] has shown that for positive definite forms in \(n \geq 4 \) variables there exists a constant \(c_0(Q) \), depending on \(Q \), such that for any positive integer \(m \) (1) is solvable for some \(\lambda \) with \(0 < |\lambda| < c_0(Q) \). We extend his result in our first theorem.

Theorem 1. (i) For any nonsingular quadratic form \(Q \) in \(n \geq 3 \) variables there exists a constant \(c_1(Q) \), depending only on \(Q \), such that for any positive integer \(m \), (1) is solvable for some \(\lambda \) with \(0 < |\lambda| < c_1(Q) \). (\(\lambda \) can be taken positive or negative if \(Q \) is indefinite.)

(ii) If \(n = 2 \) the same result holds true provided that for any odd prime \(p \) dividing \(m \) to an odd multiplicity either \(p | d \) or \(\left(\frac{-d}{p} \right) = 1 \).

We note that when \(n = 2 \), the condition given in part (ii) of the theorem is also a necessary condition, for if \(p \) is an odd prime dividing \(m \) to an odd multiplicity and \(\left(\frac{-d}{p} \right) = -1 \), then whenever \(Q(x) = \lambda m \) is solvable it follows that \(p | \lambda \), and consequently \(|\lambda| \geq p \).

Corollary. Let \(Q(x) \) be a quadratic form in \(n \geq 3 \) variables. Then for any positive integer \(m \) the congruence \(Q(x) \equiv 0 \pmod{m} \) has a nonzero solution \(x \) with \(\max |x_i| \leq c(Q)m^{1/2} \), where \(c(Q) \) is a constant depending only on \(Q \). The same result holds when \(n = 2 \) for any value of \(m \) satisfying the hypothesis of Theorem 1(ii).

This corollary generalizes the result of [6]. The Corollary is immediate from Theorem 1 in case \(Q \) is a definite form, but requires Lemma 2 for indefinite forms. Of course, the real interest is in obtaining the result of the corollary with \(c(Q) \) replaced by a constant depending only on \(n \), (for
$n \geq 4$). There has been a lot of work in this direction; see Schinzel, Schlickewei and Schmidt [11], Heath-Brown [7],[8], Sander [10], and Cochrane [4],[5].

We now seek the best possible value of λ. When $m = 1$ the problem reduces to finding the minimum nonzero value of $|Q(x)|$ as x runs through \mathbb{Z}^n. It is well known (see eg. [2, Lemma 3.1, pg. 135]) that for $n \geq 1$ there exists a constant $k(n)$, depending only on n, such that if $Q(x)$ is nonsingular then there exists an integral x with $0 < |Q(x)| \leq k(n)|d|^{1/n}$. We are led to ask the following

Question: For $n \geq 4$ does there exist a constant $c(n)$ depending only on n such that if $Q(x)$ is a nonsingular form in n variables and m is any positive integer, then (1) is solvable for some nonzero λ with $|\lambda| < c(n)|d|^{1/n}$?

It suffices to consider the case of primitive quadratic forms, for if $Q = aQ_1$ with Q_1 primitive and x_0 is such that $Q_1(x_0) = \lambda_0 m$ with $0 < |\lambda_0| < c(n)|d(Q_1)|^{1/n}$, then $Q(x_0) = (a\lambda_0)m$ and $0 < |a\lambda_0| < c(n)|d(Q)|^{1/n}$. This observation also indicates that one can do no better than $|d|^{1/n}$ for imprimitive forms. However, for primitive forms we can do better.

Theorem 2. There exist constants $c_2(n)$, $c_3(Q)$ and $c_4(d)$ depending only on n, Q and d respectively such that for any nonsingular primitive quadratic form Q we have the following.

i) If Q is indefinite and $n \geq 4$ then for any $m > 0$, (1) is solvable for some λ with

$$0 < \lambda < c_2(n)d_0^{\frac{1}{2(n-2)}}$$

(2)

where d_0 is the odd part of $|d|$. (A value for $c_2(n)$ can be easily calculated from the proof given here.)

ii) If Q is definite, $n = 4$, $m = m_1m_2^2$ with m_1 square free and $m_1 \geq c_4(d)$, or Q is definite, $n \geq 5$ and $m \geq c_3(Q)$ then the same bound (2) holds for m, with λ replaced by $-\lambda$ for negative definite forms. (The constants $c_3(Q)$ and $c_4(d)$ are those given in Lemmas 4 and 5 respectively.)

The upper bound $d_0^{\frac{1}{2(n-2)}}$ in (2) is easily seen to be best possible. Consider for example the form $Q(x) = x_1^2 + x_2^2 + m^2(x_3^2 + \cdots + x_n^2)$ where m is a product of distinct odd primes p satisfying $\left(\frac{-1}{p}\right) = -1$. Then any nonzero solution of $Q(x) = \lambda m$ must satisfy $m|\lambda$ and hence $|\lambda| \geq m = d_0^{\frac{1}{2(n-2)}}$. This example also shows that the best one can hope for with $n = 3$, is $\lambda \ll |d|^{1/2}$. Theorem 2 establishes an affirmative answer to the question above for indefinite forms in $n \geq 4$.
variables. The question remains open for definite forms in general but the following theorem lends further support to an affirmative answer.

Theorem 3. Let $Q(x)$ be a positive definite form in an even number of variables and $m = m_2 m_2$ with m_2 positive and square free. Suppose that for each odd prime divisor p of m_2 either $p|d$ or $\left(\frac{(-1)^{\frac{p-1}{2}}}{d} \right) = 1$. Then (1) is solvable for some λ with

$$0 < \lambda \leq \frac{4}{(B_n(1))^{2/n} d^{1/n}},$$

where $B_n(1)$ is the volume of a ball of radius 1 in \mathbb{R}^n.

Lemmas.

The idea for the proofs of Theorems 1 and 2 is quite simple. We make use of classical results that imply that under appropriate conditions (1) is solvable over \mathbb{Z} if it is solvable over every local ring \mathbb{Z}_p; see Lemmas 1,3,4 and 5. Thus our problem reduces to finding a small value of λ such that (1) is solvable everywhere locally and this just amounts to having λ divisible by certain primes dividing $d(Q)$ and satisfying certain quadratic residuacity conditions for other primes dividing $d(Q)$. Theorem 3 follows from Lemma 6 and a standard argument from the geometry of numbers.

Lemma 1. [13, Theorem 52] Let q be a nonzero integer and Q be a nonsingular quadratic form in $n \geq 3$ variables. Then there exists a nonzero integer $k = k(q, Q)$ with $(k, q) = 1$ such that if $a \in \mathbb{Z}$ is such that $k^2 | a$, aQ is indefinite or positive definite, and $Q(x) \equiv a \pmod{t}$ is solvable for all nonzero t, then $Q(x) = a$ is solvable over \mathbb{Z}.

Lemma 2. (Watson [15]) Let Q be a quadratic form that does not represent zero non-trivially over \mathbb{Z}. Then for any integer a represented by Q there is a representation $Q(x) = a$ with $\max |x_i| \leq \gamma(Q)|a|^{1/2}$, where $\gamma(Q)$ is a constant depending only on Q.

Lemma 3. [2, Theorem 1.5, pg. 131] Let Q be a nonsingular, indefinite form in $n \geq 4$ variables and $a \neq 0 \in \mathbb{Z}$. If a is represented by Q over all \mathbb{Z}_p, then a is represented by Q over \mathbb{Z}. (Cassels' book [2] deals with quadratic forms with even coefficients c_{ij}, for $i \neq j$, but the result extends to general quadratic forms.)

Lemma 4. (Tartakovskiĭ [12]) For any positive definite quadratic form in $n \geq 5$ variables there is a constant $c_3(Q)$ depending only on Q such that for any integer $a > c_3(Q)$, if $Q(x) \equiv a \pmod{t}$ is solvable for all nonzero t then $Q(x) = a$ is solvable over \mathbb{Z}.
Lemma 5. (Linnik, Malyšev [9]) There exists a constant \(c_4(d) \) such that for any positive definite quadratic form \(Q \) in \(n = 4 \) variables, with \(d = d(Q) \), and any square free integer \(a > c_4(d) \) such that \(Q(x) \equiv a \pmod{t} \) is solvable for all nonzero \(t \), then \(Q(x) = a \) is solvable over \(\mathbb{Z} \).

Lemma 6. (Cochrane [3]) Let \(F(x) \) be a form of any degree over \(\mathbb{Z} \) and \(m = p_1p_2\cdots p_k \) be a product of distinct primes. Suppose that for \(i = 1, 2, \ldots, k \) the congruence \(F(x) \equiv 0 \pmod{p_i} \) has a subspace of solutions of dimension \(d_i \). Then there exists a lattice of solutions of the congruence \(F(x) \equiv 0 \pmod{m} \) of volume \(\prod_{i=1}^{k} p_i^{n-d_i} \).

Lemma 7. For any primitive quadratic form \(Q \) over \(\mathbb{Z} \) in \(n \geq 2 \) variables there exists an odd number \(a_0 \) such that for any \(a \equiv a_0 \pmod{8} \) the equation \(Q(x) = a \) is solvable over \(\mathbb{Z}_2 \).

Proof: Since \(Q \) is primitive it represents some odd number \(a_0 \) over \(\mathbb{Z} \). Now if \(a \equiv a_0 \pmod{8} \) then \(a = a_0b^2 \) for some 2-adic integer \(b \). Thus \(Q \) represents \(a \) over the 2-adic integers.

Proof of Theorem 1(i). We may assume that \(Q \) is primitive and that \(m \) is square free and relatively prime to \(8d \), (see [6]). Since \(Q \) is primitive it represents some integer \(A \) (over \(\mathbb{Z} \)) relatively prime to \(2d \). Then for any integer \(B \) with \(B \equiv A \pmod{8d} \), it follows that \(Q \) represents \(B \) over every local ring \(\mathbb{Z}_p \).

Let \(k = k(q, Q) \) be as given in Lemma 1 with \(q = 8d \). In particular \((k, 8d) = 1\). Let \(\beta \) be such that \(\beta k^2m \equiv A \pmod{8d} \). Select \(\beta \) so that \(0 < \beta < 8|d| \) if \(Q \) is indefinite or positive definite and \(-8|d| < \beta < 0 \) if \(Q \) is negative definite. Set \(\lambda = \beta k^2 \). Then \(\lambda mQ \) is indefinite or positive definite, \(k^2|\lambda| \), and \(Q(x) \equiv \lambda m \pmod{p^i} \) is solvable for all prime powers \(p^i \). Thus, by Lemma 1, \(Q(x) = \lambda m \) is solvable over \(\mathbb{Z} \), and \(|\lambda| \leq 8|d|k^2 \).

Proof of Theorem 1(ii). Again we may assume that \(m \) is an odd square free integer. For each prime \(p|m \) the congruence \(Q(x) \equiv 0 \pmod{p} \) has a nonzero solution \(\pmod{p} \) (since \(p|d \) or \(\left(\frac{-d}{p} \right) = 1 \)), and thus by Lemma 6 the congruence \(Q(x) \equiv 0 \pmod{m} \) has a lattice of solutions of volume \(m \). Then by Minkowski's theorem there is a nonzero solution \(x \) of the congruence \(Q(x) \equiv 0 \pmod{m} \) with \(\max |x_i| < m^{1/2} \). For this \(x \) we have \(Q(x) = \lambda m \) with \(|\lambda| < |c_{11}| + |c_{12}| + |c_{22}| \). If \(\lambda = 0 \) then \(Q(x) \) represents \(0 \) over \(\mathbb{Z} \) and we may assume without loss of generality that \(Q(x) = x_2(c_{12}x_1 + c_{22}x_2) \), with \(c_{12} \neq 0 \). In this case set \(x_2 = m \), choose \(x_1 \) so that \(0 < |c_{12}x_1 + c_{22}m| \leq |c_{12}| \) and set \(\lambda' = c_{12}x_1 + c_{22}m \). Then \(Q(x) = \lambda'm \) with \(0 < |\lambda'| \leq |c_{12}| \).

Proof of Corollary. If \(Q \) represents \(0 \) nontrivially over \(\mathbb{Z} \) the result is trivial, indeed one obtains a solution of \(Q(x) \equiv 0 \pmod{m} \) with \(\max |x_i| \leq c(Q) \). Suppose now that \(Q \) does not
represent 0 nontrivially. In particular \(Q \) is nonsingular. Let \(\lambda, m \) be such that \(0 < |\lambda| < c_1(Q) \) and (1) is solvable. Then by Lemma 2 there exists an \(x \in \mathbb{Z}^n \) such that \(Q(x) = \lambda m \), with \(0 < \max |x_i| \leq \gamma(Q)(\lambda m)^{1/2} \). Thus \(Q(x) \equiv 0 \pmod{m} \) and \(0 < \max |x_i| \leq \gamma(Q)c_1(Q)^{1/2}m^{1/2} \).

(If \(Q \) is definite one can be more precise and obtain \(0 < \max |x_i| \leq \left| \frac{\lambda}{\beta} \right|^{1/2}m^{1/2} \) where \(|\beta| \) is the minimum modulus of the eigenvalues of \(Q \).

Proof of Theorem 2. Let \(Q \) be a nonsingular primitive quadratic form of determinant \(d \) and \(m \) be a positive integer. We may assume that \(m \) is odd and square free, (for in general, if \(m = m_1^2 2^e m_0 \) with \(m_0 \) odd, square free, and \(e = 0 \) or \(1 \), and \(\lambda \) is such that (2) holds and \(Q(x) = \lambda m_0 \) for some \(x \in \mathbb{Z}^n \), then \(Q(m_1^2 2^e x) = 2^e \lambda m \).)

Now for any odd prime \(p \), \(Q \) is equivalent over \(\mathbb{Z}_p \) to one of the following types of forms:

(i) \(\alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_3 x_3^2 + Q'(x_4, \ldots, x_n) \),

(ii) \(\alpha_1 x_1^2 + \alpha_2 x_2^2 + p\alpha_3 x_3^2 + p\alpha_4 x_4^2 + pQ'(x_5, \ldots, x_n), \quad p^{n-2}|d \)

(iii) \(\alpha_1 x_1^2 + \alpha_2 x_2^2 + p\alpha_3 x_3^2 + p^2 Q'(x_4, \ldots, x_n), \quad p^{2n-5}|d \)

(iv) \(\alpha_1 x_1^2 + \alpha_2 x_2^2 + p^2 \alpha_3 x_3^2 + p^2 Q'(x_4, \ldots, x_n), \quad p^{2(n-2)}|d \)

(v) \(\alpha_1 x_1^2 + \alpha_2 x_2^2 + p^2 Q'(x_3, \ldots, x_n), \quad p^{3(n-2)}|d \)

(vi) \(\alpha_1 x_1^2 + p\alpha_2 x_2^2 + pQ'(x_3, \ldots, x_n), \quad p^{n-1}|d \)

(vii) \(\alpha_1 x_1^2 + p^2 \alpha_2 x_2^2 + p^2 Q'(x_3, \ldots, x_n), \quad p^{2(n-1)}|d \)

(viii) \(\alpha_1 x_1^2 + p^j Q'(x_2, \ldots, x_n), \quad j \geq 3, \quad p^{3(n-1)}|d \),

where \(\alpha_1, \alpha_2, \alpha_3 \) are integers not divisible by \(p \), and \(Q' \) is a quadratic form with integer coefficients. Next to each form we have put a power of \(p \) dividing \(d \), (not necessarily the largest power).

Write,

\[
d = 2^e d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8,
\]

where \(d_k \) consists of primes \(p \) such that \(Q \) is of type \((k)\), \(1 \leq k \leq 8 \), and

\[
m = m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9,
\]

where \(m_i|d_i \), \(1 \leq i \leq 8 \), and \((m_9, d) = 1 \).

Our goal is to obtain a small value of \(\lambda \) such that \(Q(x) = \lambda m \) is solvable over \(\mathbb{Z}_p \) for all \(p \).

By considering appropriate examples it is clear that \(\lambda \) must be divisible by \(m_4 m_5 m_7 m_8 \) in order to succeed in general, thus we consider instead the equation

\[
Q(x) = \lambda m m_4 m_5 m_7 m_8 m = \lambda M,
\]

(4)

say, where \(M = m_4 m_5 m_7 m_8 m \). We consider in turn solving (4) over \(\mathbb{Z}_p \) for the various odd primes \(p \). For simplicity we shall assume that \(Q \) equals one of the eight canonical types given above (for a given prime \(p \)) and say that (4) is solvable if it is solvable over \(\mathbb{Z}_p \).
(i) If \(p \nmid d \) or \(p \mid d_1 \), (so that \(Q \) is of type (i)), then (4) is solvable for any \(\lambda \).

(ii) If \(p \mid d_2 \) and \(p \nmid m_2 \) then (4) is solvable for any \(\lambda \neq 0 \pmod{p} \), (just put \(x_3 = \cdots = x_n = 0 \)).

If \(p \mid m_2 \), then we set \(x_1 = x_2 = 0 \), and consider \(\alpha_3 x_3^2 + \alpha_4 x_4^2 = \lambda M/p \), which again is solvable for any \(\lambda \neq 0 \pmod{p} \).

(iii) If \(p \mid d_3 \) and \(p \nmid m_3 \) then (4) is solvable for \(\lambda \neq 0 \pmod{p} \). If \(p \mid m_3 \), we set \(x_1 = x_2 = 0 \) and are left with \(\alpha_3 x_3^2 = \lambda M/p \), which is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_3 M/p}{p} \right) \).

(iv) If \(p \mid d_4 \) and \(p \nmid m_4 \) then (4) is solvable for \(\lambda \neq 0 \pmod{p} \). If \(p \mid m_4 \) then we set \(x_1 = py_1 \), \(x_2 = py_2 \) and consider \(\alpha_1 y_1^2 + \alpha_2 y_2^2 + \alpha_3 x_3^2 = \lambda M/p^2 \), which is solvable for any \(\lambda \).

(v) If \(p \mid d_5 \) then as in (iv) (4) is solvable for any \(\lambda \neq 0 \pmod{p} \).

(vi) If \(p \mid d_6 \) and \(p \nmid m_6 \) then (4) is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_1 M}{p} \right) \). If \(p \mid m_6 \) then (4) is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_3 M/p^2}{p} \right) \).

(vii) If \(p \mid d_7 \) and \(p \nmid m_7 \) then (4) is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_1 M}{p} \right) \). If \(p \mid m_7 \) then we set \(x_1 = py_1 \) and consider \(\alpha_1 y_1^2 + \alpha_2 x_3^2 = \lambda M/p^2 \), which is solvable for \(\lambda \neq 0 \pmod{p} \).

(viii) If \(p \mid d_8 \) and \(p \nmid m_8 \) then (4) is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_1 M}{p} \right) \). If \(p \mid m_8 \), then setting \(x_1 = py_1 \) we see that (4) is solvable provided \(\left(\frac{\lambda}{p} \right) = \left(\frac{\alpha_3 M/p^2}{p} \right) \).

In summary, we have that (4) is solvable for all primes \(p \) (including \(p = 2 \)) if \(\lambda \) is such that

\[
\lambda M \equiv a_0 \pmod{8},
\]

\[
\left(\frac{\lambda}{p} \right) = (-1)^{e_p} \quad \text{for} \quad p \mid d_3 d_6 d_7 d_8, \ p \nmid m_7,
\]

and

\[
p \nmid \lambda \quad \text{for} \quad p \divides d_2 d_4 d_5 m_7, \quad p \nmid m_4
\]

where \(a_0 \) is the value given in Lemma 6, and the values \(e_p \) are as indicated above. Set

\[
P = \prod_{p \mid d_3 d_6 d_7 d_8} p, \quad (\text{a product over distinct primes}).
\]

By standard arguments one can obtain a solution of (5), (6) and (7) with \(\lambda \ll \sqrt{P} \), but lacking a convenient reference we have included an appendix to suit our particular needs. By Lemma 2 of the appendix there is a value of \(\lambda \) satisfying (5), (6) and (7) with

\[
0 < \lambda < \frac{32}{3} \pi^2 \sqrt{P} \prod_{p \mid P} \left(\frac{1 + \sqrt{2}}{1 - \frac{1}{p}} \right) \prod_{p \mid d_2 d_4 d_5 m_7} \left(\frac{2 - \frac{1}{p}}{1 - \frac{1}{p}} \right).
\]

Now, by the divisibility conditions given next to the canonical forms (i) to (viii) above we have

\[
\Pi_{p \mid d_2} p^{n-2} \Pi_{p \mid d_3} p^{2n-5} \Pi_{p \mid d_4} p^{2n-4} \Pi_{p \mid d_5} p^{3n-6} \Pi_{p \mid d_6} p^{n-1} \Pi_{p \mid d_7} p^{n-2} \Pi_{p \mid d_8} p^{3n-3} | d_0,
\]

7
where \(d_0 \) is the odd part of \(d \), and so

\[
\Pi_{p|d_2} \frac{1}{2} \Pi_{p|d_3} \frac{2n-5}{4} \Pi_{p|d_4} \Pi_{p|d_5} \frac{3n-3}{8} \Pi_{p|d_5} \frac{n-4}{8} \Pi_{p|d_7} \frac{n-1}{8} \Pi_{p|d_4} \frac{n-3}{8} \Pi_{p|d_8} \frac{3n-3}{8} \leq d_0^{\frac{1}{2(n-2)}}.
\]

Thus, by (4) and (8), the equation \(Q(x) = \lambda m \) is solvable over \(\mathbb{Z}_p \), for all primes \(p \), for some \(\lambda \) with

\[
0 < \lambda < \frac{32}{3} \pi^2 m_4 m_5 m_7 m_8 \Pi_{p|d_2} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \Pi_{p|d_3} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \Pi_{p|d_4} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \Pi_{p|d_5} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \Pi_{p|d_7} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \Pi_{p|d_8} \frac{2 - \frac{1}{p}}{(1 - \frac{1}{p})^2} \leq c_2(n) d_0^{\frac{1}{2(n-2)}},
\]

where \(c_2(n) \) is an easily calculable constant depending only on \(n \). Theorem 2 now follows from Lemma 3, 4 and 5.

Proof of Theorem 3. Suppose first that \(m_2 \) is odd. Then for any prime divisor \(p \) of \(m_2 \) there exists a subspace of solutions of the congruence \(Q(x) \equiv 0 \pmod{p} \) of dimension \(\frac{n}{2} \); see [3, Lemma 3]. Thus, by Lemma 6 there exists a lattice \(\mathcal{L} \) of solutions of the congruence \(Q(x) \equiv 0 \pmod{m_2} \) of volume \(m_2^\frac{3}{2} \). Let \(\mathcal{R} \) be the convex region in \(\mathbb{R}^n \) defined by \(Q(x) \leq r^2 \). Then the volume of \(\mathcal{R} \) is \(2^\frac{3}{2} r^n B_n(1)/\sqrt{d} \) where \(B_n(1) \) is the volume of an \(n \)-ball of radius 1. By Minkowski’s theorem \(\mathcal{R} \) contains a nonzero point \(x \) of \(\mathcal{L} \) if \(r^2 \geq 2d^\frac{1}{2} m_2 / B_n(1)^{2/n} \). Thus \(Q(x) = \lambda m_2 \) with \(0 < \lambda < 2d^\frac{1}{2} / B_n(1)^{2/n} \), and \(Q(m_2 x) = \lambda m \). If \(m_2 \) is even, say \(m_2 = 2m_3 \), and \(x \) satisfies \(Q(x) = \lambda m_3 \) with \(\lambda \) as above, then \(Q(2x) = (2\lambda)m_2 \) and \(Q(2m_1 x) = (2\lambda)m \), with \(2\lambda \) satisfying (3).

Note: If the odd square-free part of \(m \) is relatively prime to \(d \) then the value \(d_0^{\frac{1}{2(n-2)}} \) in (2) can be replaced by \(d_0^{\frac{1}{2(n-1)-3}} \Pi_{p|d_0} \frac{1+\frac{3}{p}}{(1-\frac{1}{p})^2} \). In particular, taking \(m \) to be one we have that for any indefinite, primitive nonsingular quadratic form \(Q \) in \(n \geq 4 \) variables there exists an \(x \in \mathbb{Z}^n \) such that \(0 < Q(x) < c_4(n) d_0^{\frac{1}{2(n-1)-3}} \Pi_{p|d_0} \frac{1+\frac{3}{p}}{(1-\frac{1}{p})^2} \). Watson [14] had shown earlier that for such forms in \(n \geq 3 \) variables an \(x \) exists with \(0 < Q(x) < c(\epsilon) |d|^{\frac{1}{2(n-1)+\epsilon}} \).
Appendix.

Lemma 1. Let \(n \) be any integer and \(m \) be a square free product of odd primes. Then

\[
\left| \sum_{x=0 \atop (x,8m)=1}^{8m-1} e^{2\pi ix^2/8m} \right| \leq 4\prod_{p \mid m} (1 + \sqrt{p}) \prod_{p \nmid n} (p - 1).
\]

Proof: Say \(m = p_1 p_2 \cdots p_k \) and set

\[
x = x_1 \frac{8m}{p_1} + x_2 \frac{8m}{p_2} + \cdots + x_k \frac{8m}{p_k} + x_{k+1} m
\]

where \(x_i \) runs through \(1, 2, 3, \ldots, (p_i - 1) \) for \(1 \leq i \leq k \) and \(x_{k+1} \) runs through \(1, 3, 5, 7 \). Then

\[
\left| \sum_{x=0 \atop (x,8m)=1}^{8m-1} e^{2\pi ix^2/8m} \right| = \left| \sum_{x_1} \cdots \sum_{x_{k+1}} e^{2\pi i \left(x_1 \frac{8m}{p_1} + \cdots + x_k \frac{8m}{p_k} + x_{k+1} m \right)^2/8m} \right|
\]

\[
\leq 4\prod_{i=1}^{k} \left(\sum_{x_i} e^{2\pi x_i (8m/p_i)} \right)^2 \leq 4\prod_{p_i \mid n} (p_i - 1) \prod_{p_i \nmid n} (1 + \sqrt{p_i}).
\]

Lemma 2. Let \(D = 8d_1 d_2 \) where \(d_1, d_2 \) are square free products of odd primes with \((d_1, d_2) = 1 \). Let \(c \) be any integer with \((c, D) = 1 \). Then there exists a \(\lambda \in \mathbb{Z} \) with \((\lambda, D) = 1 \) and

\[
0 < \lambda \leq \frac{32}{3} \pi^2 \sqrt{d_1 \Pi_{p \mid d_1} \left(1 + \frac{2}{\sqrt{p}} \right) \Pi_{p \mid d_2} \left(\frac{2 - \frac{1}{p}}{1 - \frac{1}{p}} \right)}
\]

(1)

such that \(cz^2 \equiv \lambda \pmod{8d_1} \) for some \(z \) with \((z, 8d_1) = 1 \).

Proof: Write \(x = 8d_1 w + kd_2 z^2 \) where \(k \) is any integer satisfying \(d_2 k \equiv c \pmod{8d_1} \), \(w \) is such that \((w, d_2) = 1 \) and \(z \) is such that \((z, 8d_1) = 1 \). Then \(x \equiv cz^2 \pmod{8d_1} \) and \((x, D) = 1 \). Thus our goal is to find \(w, z \) such that \(x \) is small \(\pmod{D} \). Let \(I = \{0, 1, 2, \ldots, M - 1\} \) where \(M \in \mathbb{Z}, M < D \), let \(\chi_I \) be the characteristic function of \(I \pmod{D} \) and \(\alpha = \chi_I \ast \chi_I \). Then \(\alpha \) has a Fourier expansion \(\alpha(x) = \sum_{y=-d_1 d_2}^{d_1 d_2} a(y) e_D(xy) \), where \(e_D(\cdot) = e^{2\pi i (\cdot)/D} \), and for \(y \neq 0 \), \(|a(y)| = \frac{1}{D} \frac{\sin^2 \pi My/D}{\sin^2 \pi y/D} \). In particular, for \(|y| \leq 4d_1 d_2 \) we have

\[
|a(y)| \leq \frac{M^2}{D}, \quad \text{and}
\]

(2)
\[|a(y)| \leq \frac{D}{4y^2}, \text{ for } y \neq 0. \tag{3} \]

Our goal is to show the following sum is positive for \(M \) sufficiently large.

\[
\sum_{w=1}^{d_2} \sum_{x=1}^{d_1} \alpha(8d_1w + kd_2x^2) = \sum_{w=1}^{d_2} \sum_{x=1}^{d_1} \sum_{y=1}^{d_1} a(y)e_D((8d_1w + kd_2x^2)y) \\
= a(0)\phi(8d_1d_2) + \sum_{y \neq 0} a(y) \sum_{w} \sum_{x} e_D(8d_1yw)e_D(kd_2y^2) \\
= a(0)\phi(8d_1d_2) + \text{ Error, say.}
\]

To estimate the error term we first observe that if \(\delta_2 = (d_2, y) \) then

\[
\sum_{w=1}^{d_2} e_{d_2}(yw) = \sum_{\delta | \delta_2} \mu \left(\frac{d_2}{\delta} \right) \delta = \mu \left(\frac{d_2}{\delta_2} \right) \sum_{\delta | \delta_2} \mu \left(\frac{\delta}{\delta} \right) \delta \\
= \mu \left(\frac{d_2}{\delta_2} \right) \phi(\delta_2).
\]

Thus by Lemma 1 we have,

\[
|\text{Error}| \leq \sum_{\delta_1 | 8d_1} \sum_{\delta_2 | d_2} \sum_{y \neq 0} |a(y)||\sum_{w} e_{d_2}(yw)||\sum_{x} e_{8d_1}(ky^2)| \\
= 4 \sum_{\delta_1 | 8d_1} \sum_{\delta_2 | d_2} \phi(\delta_2) \Pi_{p | \delta_1} (1 + \sqrt{p}) \sum_{p \nmid \delta_1} (p - 1) \Pi_{p | \delta_1} (1 + \sqrt{p}) |a(y)|.
\]

Set \(y = \delta_1 \delta_2 \gamma \) with \(\gamma = -\left[\frac{4d_1d_2}{\delta_1 \delta_2} \right] + 1, \ldots, \left[\frac{4d_1d_2}{\delta_1 \delta_2} \right], \gamma \neq 0 \). We split the sum over \(y \) into two pieces. Suppose first that \(\delta_1 \delta_2 \leq \frac{2d_1d_2}{M} \). Then, using (2) and (3) we have

\[
\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| = \sum_{|\gamma| \leq \left[\frac{4d_1d_2}{\delta_1 \delta_2 M} \right]} \frac{M^2}{D} + \sum_{|\gamma| \geq \left[\frac{4d_1d_2}{\delta_1 \delta_2 M} \right] + 1} \frac{D}{4(\delta_1 \delta_2)^2 \gamma^2}.
\]

Now \(\sum_{\gamma=N+1}^{\infty} \frac{1}{\gamma^2} \leq \int_{N}^{\infty} \frac{1}{x^2} dx = \frac{1}{N} \) for \(N \geq 1 \), and

\[
\left[\frac{4d_1d_2}{\delta_1 \delta_2 M} \right] \geq \frac{4d_1d_2}{2d_1d_2} - 1 \geq \frac{2d_1d_2}{\delta_1 \delta_2 M} \text{ for } \delta_1 \delta_2 < \frac{2d_1d_2}{M}.
\]

10
Thus,

\[
\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| \leq 2 \frac{M^2}{D} \cdot \frac{4d_1 d_2}{\delta_1 \delta_2 M} + 2 \frac{D}{4(\delta_1 \delta_2)^2} \cdot \frac{\delta_1 \delta_2 M}{2d_1 d_2} = \frac{3M}{\delta_1 \delta_2}.
\]

Suppose now that \(\delta_1 \delta_2 \geq \frac{2d_1 d_2}{M} \). Then

\[
\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| < \frac{2d_1 d_2}{(\delta_1 \delta_2)^2} \sum_{|\gamma| \geq 1} \frac{1}{\gamma^2} \leq \frac{M}{\delta_1 \delta_2} \frac{\pi^2}{3}.
\]

Thus for any choice of \(\delta_1, \delta_2 \) we have

\[
\sum_{y \neq 0, (y, \delta_1 d_1) = \delta_1, (y, \delta_2 d_2) = \delta_2} |a(y)| < \frac{\pi^2}{3} \frac{M}{\delta_1 \delta_2},
\]

and so,

\[
|\text{Error}| < \frac{4}{3} \pi^2 M \left[\sum_{\delta_1 |\delta_2 d_2} \frac{1}{\delta_1} \Pi_{p|d_2} (p - 1) \Pi_{p|d_1} \frac{1 + \sqrt{p}}{p} \right] \left(\sum_{\delta_2 |d_2} \frac{\phi(\delta_2)}{\delta_2} \right)
\]

\[
< \frac{4}{3} \pi^2 M 2 \Pi_{p|d_2} (2 + \sqrt{p}) \Pi_{p|d_2} \left(2 - \frac{1}{p} \right).
\]

Now, the sum of interest is positive provided that

\[
M^2 \cdot \frac{1}{2} \Pi_{p|d_1 d_2} \left(1 - \frac{1}{p} \right) > |\text{Error}|.
\]

It suffices to take \(M \geq \frac{16}{3} \pi^2 \Pi_{p|d_1} \left(2 + \sqrt{p} \right) \Pi_{p|d_2} \left(2 - \frac{1}{p} \right), \) whence (1) is obtained.
REFERENCES

6. D. Grant, Small solutions to a given quadratic form with a variable modulus, to be published.