§1. Introduction.

Let \(Q(x) = Q(x_1, x_2, \ldots, x_n) \) be a quadratic form with integer coefficients and \(m = pq \), a product of distinct primes. Heath-Brown [5, Theorem 1] proved that for \(n \geq 4 \) and any \(\epsilon > 0 \) the congruence

\[
Q(x) \equiv 0 \mod m
\]

has a nonzero solution with \(\max |x_i| \ll m^{\frac{1}{2} + \epsilon} \), which was an improvement on the result of Cochrane [1]. We shall prove here a best possible result, namely that for \(n \geq 4 \) the congruence (1) has a nonzero solution with \(\max |x_i| \ll m^{\frac{1}{2}} \), generalizing the result of Cochrane [2] for prime moduli.

Indeed, following the line of argument in Heath-Brown's work, we shall prove the analogous result for an arbitrary box centered at the origin. Let

\[
B = \{ x \in \mathbb{Z}^n : |x_i| \leq B_i, 1 \leq i \leq n \}
\]

where the \(B_i \) are nonnegative integers. Set \(b_i = 2B_i + 1 \), \(1 \leq i \leq n \), and \(|B| = \Pi_{i=1}^{n} b_i \); the cardinality of \(B \).

Theorem. Let \(Q \) be any quadratic form in \(n \geq 4 \) variables over \(\mathbb{Z} \) and \(m = pq \) a product of distinct primes. Then any box \(B \) as in (2) with

\[
|B| > 2^{50n} m^{n/2}
\]

contains a nonzero solution of (1).

Further difficulties are encountered for a general modulus using the method given here. In particular, one needs to be able to obtain an upper bound as in (13) for any square free \(m \) comprised of primes \(p \) with \(\Delta_p(Q) = -1 \). Schinzel, Schlickewei and Schmidt [6], Heath-Brown [5] and Cochrane [3], have obtained results for a general modulus \(m \), but they all (likely) fall short of being best possible. (No attempt was made to get the best possible constant in (3).)

\(^1\) Research was supported by the United States National Security Agency.
§2. Prime Moduli.

We begin by considering the case of a prime modulus. If n is even and p is an odd prime then we set

$$
\Delta_p(Q) = \left(\frac{(-1)^{\frac{n}{2}} \det Q}{p} \right)
$$

if $p \nmid \det Q$ and $\Delta_p(Q) = 0$ if $p | \det Q$. Here, $\left(\frac{\cdot}{p} \right)$ denotes the Legendre symbol. The following lemma is just a special case of Theorem 2 of [2].

LEMMA 1. Suppose that $n \geq 4$ is even, $p > 2^{4n+6}10^{2n-2}$, and that $\Delta_p(Q) = -1$. Let B be a box as in (2) with $2^{5n+7}10^n \leq b_i \leq p$ for $1 \leq i \leq n$ and

$$
|B| > 2^{3n^2+4n+2+10n}p^\frac{n}{2}.
$$

Then B contains a nonzero point x with $p|Q(x)$. (This lemma holds for boxes not centered at the origin as well.)

LEMMA 2. Suppose that $n \geq 4$, and that B is a box as in (2) with

$$
|B| > 2^{2n}p^\frac{n}{2}.
$$

Then B contains a nonzero point x with $p|Q(x)$.

PROOF: Suppose first that $n = 4$ and that B satisfies (5). If $\Delta_p(Q) = 0$ or 1 then the congruence

$$
Q(x) \equiv 0 \mod p
$$

has a lattice of solutions of determinant p^2 and hence, by Minkowski’s theorem, it has a nonzero solution in B.

Suppose now that $\Delta_p(Q) = -1$. If $B_i \geq p$ for some i then B contains the trivial (but nonzero) solution x with $x_i = p$ and $x_j = 0$ for $j \neq i$. Thus we may assume that $B_i < p$ for all i. In particular, this implies that $p > 2^{22}10^6$, for if $p \leq 2^{22}10^6$ then by (5) some $b_i > 2^{22}p^\frac{3}{2} > 2p$.

For any $B_i > \frac{p}{2}$ we replace B_i with $\frac{p-1}{2}$ and form a new box $B' = \{ x \in \mathbb{Z}^4 : |x_i| \leq B'_i, 1 \leq i \leq 4 \}$, where $B'_i = \min \{ B_i, \frac{p-1}{2} \}$, $b'_i = 2B'_i + 1$. We note that $b'_i \leq p$ for $1 \leq i \leq 4$ and that

$$
|B'| > \Pi_{i=1}^4 \frac{b'_i}{2} > 2^{84}p^2.
$$

If $b'_i \geq 2^{27}10^4$ for $1 \leq i \leq 4$, then by Lemma 1 B' contains a nonzero solution of (6). If $b'_i < 2^{27}10^4$ for some i, say $i = 1$, then we set $x_1 = 0$ and consider the form $Q_1(x_2, x_3, x_4) = Q(0, x_2, x_3, x_4)$.

The congruence $Q_1 \equiv 0 \mod p$ has a lattice of solutions in \mathbb{Z}^3 of determinant p^2. Now $b'_{b'_3b'_4} = |B'|/b'_1 > 2^{41}p^2$, and so by Minkowski’s theorem there is a nonzero point (x_2, x_3, x_4) in the lattice with $|x_i| \leq B'_i$, $2 \leq i \leq 4$. Then $(0, x_2, x_3, x_4)$ is a nonzero solution of (6) in B.

2
Suppose now that \(n \geq 4 \) and that, without loss of generality, \(b_1 \geq b_2 \cdots \geq b_n \). Set \(Q_2(x_1, x_2, x_3, x_4) = Q(x_1, x_2, x_3, x_4, 0, 0, \ldots, 0) \). Then by (5) we have

\[
\prod_{i=1}^{4} b_i \geq (\prod_{i=1}^{n} b_i)^{4/n} > 2^{88} p^2,
\]

and so there is a nonzero point \((x_1, x_2, x_3, x_4) \) with \(p|Q_2(x_1, x_2, x_3, x_4) \), and \(|x_i| \leq B_i \) for \(1 \leq i \leq 4 \). Then \((x_1, x_2, x_3, x_4, 0, 0, \ldots, 0) \) is the desired solution of (6).

As in the proof of Lemma 2 we may assume that \(n = 4 \) and that \(0 \leq B_i < \frac{m}{2} \) for \(1 \leq i \leq 4 \). Also, we may assume that \(p \) and \(q \) are odd. Let \(B \) be a box as in (2) satisfying \(|B| > 2^{200} m^2 \).

Case i: Suppose that \(\Delta_p = 0 \) or 1 or that \(\Delta_q = 0 \) or 1, say without loss of generality that the former holds. In this case we simply reproduce the elegant argument of Heath-Brown [5, §2]. Let \(\mathcal{L} \) be a lattice of solutions of (6) of determinant \(p^2 \). Let \(\overline{B} \) be the solid box of points in \(\mathbb{R}^4 \) with \(|x_i| \leq B_i + \frac{1}{2} \), \(1 \leq i \leq 4 \). Then by the theorem on successive minima, there are positive values \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) such that \(\lambda_i \overline{B} \) contains \(i \) linearly independent points of \(\mathcal{L} \), \(1 \leq i \leq 4 \), and

\[
\prod_{i=1}^{4} \lambda_i \leq 2^4 p^2 / |B|.
\]

Let \(v_1, v_2, v_3, v_4 \) be linearly independent points of \(\mathcal{L} \) with \(v_i = (v_{i1}, v_{i2}, v_{i3}, v_{i4}) \in \lambda_i \overline{B} \), so that \(|v_{ij}| \leq \lambda_i (B_j + \frac{1}{2}) \) for \(1 \leq i, j \leq 4 \).

Set \(F(y_1, y_2, y_3, y_4) = Q \left(\sum_{i=1}^{4} y_i v_i \right) \). Now

\[
\prod_{i=1}^{4} \frac{1}{4\lambda_i} \geq 2^{-12} |B| / p^2 > 2^{138} q^2,
\]

and so by Lemma 2 there is a nonzero point \((y_1, y_2, y_3, y_4) \) with \(q|F(y_1, y_2, y_3, y_4) \) and \(|y_i| \leq \frac{1}{4\lambda_i} \), \(1 \leq i \leq 4 \). Then for \(1 \leq j \leq 4 \), \(|\sum_{i=1}^{4} y_i v_{ij}| \leq B_j \), and so \(\sum_{i=1}^{4} y_i v_i \) is a nonzero point in \(B \) satisfying (1).

Case ii: Suppose that \(\Delta_p = \Delta_q = -1 \). If \(B_i < 2^{64} \) for some \(i \), say \(i = 1 \), then we set \(x_i = 0 \) and \(Q_1(x_2, x_3, x_4) = Q(0, x_2, x_3, x_4) \). The congruence \(Q_1 \equiv 0 \mod m \) has a lattice of solutions in \(\mathbb{Z}^3 \) of determinant \(m^2 \). Since \(b_2 b_3 b_4 = |B| / b_1 \geq 2^{-65} |B| > 2^{138} m^2 \), it follows that there is a nonzero point \((x_2, x_3, x_4) \) in this lattice with \(|x_i| \leq B_i \), \(2 \leq i \leq 4 \). Thus we may assume that \(B_i \geq 2^{64} \) for all \(i \).

Suppose next that \(p < 2^{52} \) or \(q < 2^{52} \), say the former. Let

\[
B_1 = \left\{ x \in \mathbb{Z}^4 : x_i \leq \left\lfloor \frac{B_i}{p} \right\rfloor, \ 1 \leq i \leq 4 \right\}.
\]

Then (assuming \(B_i \geq 2^{64} \) for all \(i \))

\[
|B_1| \geq \prod_{i=1}^{4} \left(\frac{2B_i}{p} - 1 \right) > \prod_{i=1}^{4} \frac{B_i}{p} > \frac{|B|}{2^{8} p^4} \geq 2^{88} q^2.
\]
Thus, by Lemma 2, there is a nonzero point \(\mathbf{x} \in \mathcal{B}_1 \) with \(q|Q(\mathbf{x}) \). Then \(p \mathbf{x} \) is a nonzero solution of (1) in \(\mathcal{B} \).

Thus, we may assume from hereon that

\[
2^{64} \leq B_i < \frac{m}{2}, \quad 1 \leq i \leq 4,
\]

(7)

and that \(p, q > 2^{52} \). We will show that under these conditions, if

\[
|\mathcal{B}| \geq 2^{103}m^2
\]

(8)

then \(2\mathcal{B} \) contains a nonzero solution of (1). The theorem follows on applying this result to the box \(\{ \mathbf{x} \in \mathbb{Z}^4 : |x_i| \leq [B_i/2] \} \).

In what follows it will be convenient to split the \(b_i \) into two sets, those with \(b_i \leq q \) and those with \(b_i > q \). Let \(s \) denote the cardinality of the first set and set

\[
\beta = \Pi_{b_i \leq q} b_i.
\]

(9)

Then by (8) we have \(\beta m^{4-s} \geq 2^{103}m^2 \), and so \(\beta \geq 2^{103}m^{s-2} \). If \(s \geq 2 \) it follows that

\[
\beta \geq 2^{103}q^{s-2}.
\]

(10)

If \(s = 0 \) then \(\beta = 1 > 2^{103}/q^2 \) (since \(q > 2^{52} \)), while if \(s = 1 \) then \(\beta = b_i > 2^{65} > 2^{103}/q \). Thus (10) holds for all \(s \).

§4. Exponential Sums. \(n = 4, \Delta_p(Q) = \Delta_q(Q) = -1 \).

Let \(\mathbb{Z}_m \) denote the residue class ring mod \(m \). We shall identify \(\mathbb{Z}_m \) with the set of integer representatives from \(-\left[\frac{m}{2} \right] \) to \(\left[\frac{m}{2} \right] \) and make similar identifications for \(\mathbb{Z}_p \) and \(\mathbb{Z}_q \). Thus if \(y \in \mathbb{Z}_m \) we can write \(|\sin(\pi y/m)| \geq |2y/m| \). Let \(e_m(\alpha) = e^{2\pi i \alpha/m} \) and \(x \cdot y = \sum_{i=1}^{4} x_i y_i \). We shall abbreviate complete sums \(\sum_{x \in \mathbb{Z}_m^4} \) by \(\sum_{x \in \mathbb{Z}_m} \). Let \(Q^* \) be the quadratic form associated with the inverse of the matrix representing \(Q \) mod \(m \). Let \(V_m, V_p \) and \(V_q \) denote the sets of zeros of \(Q \) in \(\mathbb{Z}_m^4, \mathbb{Z}_p^4 \) and \(\mathbb{Z}_q^4 \) respectively.

Let \(\mathcal{B} \) be a box of points as in (2) satisfying (7) and (8). Let \(\chi_{\mathcal{B}} \) denote the characteristic function of \(\mathcal{B} \) (viewed as a subset of \(\mathbb{Z}_m^4 \)) and \(\alpha = \chi_{\mathcal{B}} * \chi_{\mathcal{B}} \) the convolution of \(\chi_{\mathcal{B}} \) with itself,

\[
\alpha(\mathbf{x}) = \sum_{w \in \mathcal{B}} \sum_{\mathbf{x} \in \mathcal{B}} 1
\]

with Fourier expansion \(\alpha(\mathbf{x}) = \sum_{y(\mathbf{m})} a(y) e_m(\mathbf{x} \cdot \mathbf{y}) \). Then

\[
a(y) = m^{-4} \Pi_{i=1}^{4} \frac{\sin^2 \pi b_i y_i/m}{\sin^2 \pi y_i/m},
\]

where a term in the product is taken to be \(b_i^2 \) if \(y_i = 0 \). In particular,

\[
a(y) \leq m^{-4} \Pi_{i=1}^{4} \min \left(\frac{b_i^2}{m^2}, \frac{1}{2^2 y_i^2} \right).
\]

(11)
By Lemma 3 of [1] we have
\begin{equation}
\sum_{x \in V_m} a(x) \geq m^{-4}|V_m| \sum_{x \in (n)} a(x) - q^2|V_p| \sum_{Q^*(u) \equiv 0 \mod q} a(pu) \\
- p^2|V_q| \sum_{Q^*(v) \equiv 0 \mod p} a(qv) - p^2q \sum_{Q^*(y) \equiv 0 \mod p} a(y) \\
- pq^2 \sum_{Q^*(y) \equiv 0 \mod q} a(y),
\end{equation}

where \(u, v \) and \(y \) run through complete sets of residues \(\mod q, \mod p \) and \(\mod m \) respectively. Now,
\[
|V_m| = |V_p||V_q| = (p^3 - p^2 + p)(q^3 - q^2 + q) > m^3 \left(1 - \frac{1}{p} \right) \left(1 - \frac{1}{q} \right) > \frac{1}{2} m^3,
\]
and so the first term on the right-hand-side of (12) is greater than \(\frac{1}{2} |B|^2 / m \). Our goal is to show that the sum of the remaining four terms on the right-hand-side of (12) is less than \(\frac{2}{5} |B|^2 / m \), whence we have that
\[
\sum_{x \in V_m} a(x) \geq \frac{1}{10} \frac{|B|^2}{m} > |B| = \alpha(0),
\]
and conclude that \(2B \) contains a nonzero solution of (1). By symmetry it is enough to consider just the second and fourth terms on the right-hand-side of (12) which we do in sections 5 and 6 respectively.

We shall make use of the following upper bounds which are taken from inequalities (9) and (10) of [2], (with \(t = 14 \)). Let \(B \) be a box as in (2) with all \(B_i < \frac{q}{2} \), viewed as a subset of \(\mathbb{Z}^4_q \). Then
\begin{equation}
|B \cap V_q| \leq 2^4 \left(\frac{|B|}{q} + q \right).
\end{equation}

If in addition \(B_i \leq 2^{-21} q \) for \(1 \leq i \leq 4 \), then
\begin{equation}
|B \cap V_q| \leq 2^{85} \frac{|B|}{q} + 2^{-14} q.
\end{equation}

§5. The sum \(\sum^* a(pu) \).

In this section \(u \) runs through the set of representatives of \(\mathbb{Z}^4_q \) with \(- \frac{q}{2} < u_i < \frac{q}{2}\), \(1 \leq i \leq 4 \). We shall abbreviate sums of the type \(\sum_{Q^*(u) \equiv 0 \mod q} \) by \(\sum^*_u \). For \(j = 1, 2, 3, 4 \) let \(\pi \) run through the set of injections of \(\{1, 2, \ldots, j\} \) into \(\{1, 2, 3, 4\} \) with \(\pi(h) < \pi(i) \) for \(h < i \). Thus
for any choice of \(j \) values from \(\{1, 2, 3, 4\} \) there is exactly one such mapping \(\pi \) taking on these values. Then, by (11), we have

\[
\sum_{Q^*(u) \equiv 0 \mod q} a(pu) \leq m^4 \sum_{u} \Pi_{i=1}^{*} \min \left(\frac{b_i^2}{m^2}, \frac{1}{4p^2u_i^2} \right)
\]

\[
\leq m^4 \sum_{j=0}^{4} \sum_{u} \Pi_{i=1}^{\mu} \frac{1}{4p^2u_i^2} \quad \text{if } \frac{u_i}{s_{\pi(i)}} \leq \frac{b_{\pi(i)}}{s_{\pi(i)}}, \\
\frac{b_i^2}{m^2} \quad \text{if } \frac{u_i}{s_{\pi(i)}} > \frac{b_{\pi(i)}}{s_{\pi(i)}}, \\
\text{otherwise}
\]

\[
\leq m^4 \sum_{j=0}^{4} \sum_{k_1=0}^{\infty} \cdots \sum_{k_j=0}^{\infty} \Pi_{i=1}^{\mu} \frac{b_i^2}{m^2} \sum_{k_1=0}^{\infty} \cdots \sum_{k_j=0}^{\infty} \Pi_{i=1}^{\mu} \frac{b_i^2}{m^2}
\]

\[
\leq m^{-4} |B|^2 \sum_{j=0}^{4} \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} \Pi_{i=1}^{\mu} \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} 1.
\]

(15)

We break the sum over \(k_1, \ldots, k_j \) into two pieces \(S_1, S_2 \), the first being a sum over those \(k_i \) for which \(2^{k_i} \leq 2^{-21} b_{\pi(i)} \), \(1 \leq i \leq j \), and the second a sum over those \(k_i \) for which \(2^{k_i} > 2^{-21} b_{\pi(i)} \), for some \(i \).

Now, in the sum \(S_1 \), \(2^{k_i} q / b_{\pi(i)} \leq 2^{-21} q \), for \(1 \leq i \leq j \) and \(q / b \ell \leq 2^{-21} q \) for all \(\ell \) (by (7)). Thus we can apply the upper bound (14) to the inner sum \(\sum_{i}^{u} \) in (15) to get,

\[
|S_1| \leq \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} \left(\Pi_{i=1}^{\mu} \frac{1}{2^{k_i}} \right) \left(\frac{\alpha_{\pi(i)}}{q} \sum_{i=1}^{\mu} \left(\frac{2^{k_i+1} q}{b_{\pi(i)}} + 1 \right) \Pi_{\ell} \left(\frac{q}{b_{\ell}} + 1 \right) \right)
\]

\[
\leq \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} \left(\Pi_{i=1}^{\mu} \frac{1}{2^{k_i}} \right) \left(\frac{\alpha_{\pi(i)}}{q} \sum_{i=1}^{\mu} \left(\frac{2^{k_i+2} q}{b_{\pi(i)}} \Pi_{b_{\pi(i)} > q} \frac{2^{k_i+2} q}{b_{\ell}} + \frac{2 q}{b_{\ell}} \Pi_{\ell} q + 2^{-14} q \right) \right)
\]

\[
\leq \frac{2^{2\beta+1} q^{s-1}}{\beta} \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} \Pi_{i=1}^{\mu} \frac{1}{2^{k_i}} + 2^{-14} q \sum_{k_1}^{\infty} \cdots \sum_{k_j}^{\infty} \Pi_{i=1}^{\mu} \frac{1}{2^{k_i}},
\]

\[
\leq \frac{2^{2\beta+1} q^{s-1}}{\beta} + 2^{-14} q + q,
\]

where \(\beta \) and \(s \) are defined in (9). Inserting the lower bound for \(\beta \) given in (10) we obtain

\[
|S_1| \leq 2^{-13+2j} q.
\]

(16)

In the sum \(S_2 \) we have \(2^{k_i} > 2^{-21} b_{\pi(i)} \) for some \(i \) with \(1 \leq i \leq j \). In particular \(k_i > 44 \) (by (7)). We consider just the case \(k_1 > 44 \), and multiply the result by \(j \). Applying the upper bound (13) to the inner sum in \(S_2 \) we obtain

\[
|S_2| \leq j \sum_{k_1=44}^{\infty} \sum_{k_0=0}^{\infty} \cdots \sum_{k_j=0}^{\infty} \left(\Pi_{i=1}^{j} \frac{1}{2^{k_i}} \right) 2^4 \left(\sum_{i=1}^{j} \left(\frac{2^{k_i+1} q}{b_{\pi(i)}} + 1 \right) \right) \Pi_{\ell} \left(\frac{q}{b_{\ell}} + 1 \right) + q
\]

\[
\leq 2^4 j \sum_{k_1=44}^{\infty} \cdots \sum_{k_j=0}^{\infty} \left(\Pi_{i=1}^{j} \frac{1}{2^{k_i}} \right) \left[\frac{1}{q} \Pi_{b_{\pi(i)} \leq q} \frac{2^{k_i+2} q}{b_{\pi(i)}} \Pi_{b_{\pi(i)} > q} \frac{2 q}{b_{\ell}} \Pi_{\ell>q} \right]
\]

\[
\leq \frac{2^{2j+8} q^{s-1}}{\beta} \sum_{k_1=44}^{\infty} \cdots \sum_{k_j=0}^{\infty} \Pi_{i=1}^{j} \frac{1}{2^{k_i}} + 2^4 j q \sum_{k_1=44}^{\infty} \cdots \sum_{k_j=0}^{\infty} \Pi_{i=1}^{j} \frac{1}{2^{k_i}}
\]

\[
\leq j 2^{j-139} q + j 2^{j-84} q \leq 2^{-77} q,
\]

(17)
where again we have used the lower bound for β in (10). Thus by (15), (16) and (17) we have

$$
q^2|V_p| \sum_{Q^*(u)\equiv 0 \mod q} a(pu) \leq q^2 p^3 m^{-4} |B|^2 \sum_{j=0}^{4} \sum_{\pi} 2^{-12+2j} q^3
\leq \frac{5}{32} \frac{|B|^2}{m}.
$$

§6. The sum $\sum a(y)$.

Set $y = v + pu$. Then as v and u run through complete sets of residues mod p and mod q respectively with $|v_i| < \frac{p}{2}$ and $|u_i| < \frac{q}{2}$, $1 \leq i \leq 4$, y runs through a complete set of residues mod m, with $|y_i| < \frac{m}{2}$, $1 \leq i \leq 4$. We also note that $|y_i| \geq |pu_i| - |v_i| > \frac{1}{2} p|u_i|$, if $|u_i| \neq 0$. Thus, by (11),

$$
\sum_{Q^*(y)\equiv 0 \mod p} a(y) \leq m^4 \sum_{y} \prod_{i=1}^{4} \min \left(\frac{b_i^2}{m^2}, \frac{1}{4y_i^2} \right)
\leq m^4 \sum_{y} \prod_{i=1}^{4} \sum_{u_i = -[q/2]}^{[q/2]} \min \left(\frac{b_i^2}{m^2}, \frac{1}{4(v_i + pu_i)^2} \right)
\leq m^4 \sum_{y} \prod_{i=1}^{4} \left[\min \left(\frac{b_i^2}{m^2}, \frac{1}{4v_i^2} \right) + \sum_{0 < |u_i| \leq |v_i|} \frac{b_i^2}{m^2} + \sum_{|u_i| > |v_i|} \frac{1}{4u_i^2} \right].
$$

(18)

Now if $b_i \leq q$ then the sum in (18) within the brackets is bounded above by

$$
\frac{b_i q}{m^2} + \frac{2q b_i}{m^2} + \frac{4q b_i}{m^2} = \frac{7q b_i}{m^2}.
$$

If $b_i > q$ then $\frac{b_i}{m} > \frac{1}{p}$, so that $\frac{4}{p^2} < \frac{4b_i^2}{m^2}$. Also $\frac{4}{p^2} < \frac{1}{v_i^2}$. Thus the same sum is bounded above by

$$
\min \left(\frac{b_i^2}{m^2}, \frac{1}{4v_i^2} \right) + \frac{4}{p^2} \leq \min \left(\frac{5b_i^2}{m^2}, \frac{5}{4v_i^2} \right).
$$

Thus, continuing from (18) we have

$$
\sum_{y} a(y) \leq m^4 \sum_{v} \prod_{b_i \leq q} \frac{7q b_i}{m^2} \prod_{b_i > q} \min \left(\frac{5b_i^2}{m^2}, \frac{5}{4v_i^2} \right)
\leq 7^4 m^{4-2s} q^s \sum_{v} \prod_{b_i > q} \left(\frac{b_i^2}{m^2}, \frac{1}{4v_i^2} \right)
\leq 7^4 m^{4-2s} q^s \sum_{j=0}^{4} \sum_{k_1=0}^{\pi} \cdots \sum_{k_{j}=0}^{\pi} \sum_{k_{j+1}=0}^{\pi} \cdots \sum_{k_{j+s}=0}^{\pi} \prod_{b_{s+1} > q} \frac{b_{s+1}^2}{4k_1 m^2} \Pi_{b_i > q} \frac{b_i^2}{m^2}
\leq \frac{7^4 |B|^2 q^s}{m^4 \beta} \sum_{j=0}^{4} \sum_{k_1} \cdots \sum_{k_{j}} \Pi_{b_{s+1} > q} \frac{1}{4k_1} \sum_{v} \prod_{(above)}(19)
$$
Now, if \(b_{\pi(i)} \leq q \) for some \(i \), then \(\frac{m}{2b_{\pi(i)}} \geq \frac{p}{2} \) and so the sum over \(v \) in (19) is empty. Thus we may assume that \(b_{\pi(i)} > q \) for all \(i \). If \(b_t \leq q \) then we replace \(\frac{m}{2b_t} \) by \(\frac{p}{2} \) in the upper bound on \(|v| \) in (19). Then using the upper bound in (13) we have that the sum over \(v \) in (19) is bounded by

\[
\sum_{v_{\pi(i)} < \frac{2m}{2b(i)}, 1 \leq i \leq j} 1 \leq \frac{24}{p} \left(\Pi_{i=1}^{j} \frac{2^{k_i} + 2m}{b_{\pi(i)}} \right) \left(\Pi_{b_t > q} \frac{2m}{b_t} \right) p^s + 2^4 p
\]

\[
\leq \frac{2^{12} \beta p^{s-1} m^{4-s}}{|B|} \Pi_{i=1}^{j} 2^{k_i} + 2^4 p.
\]

Thus,

\[
\sum_{y} a(y) \leq \frac{2^{32} |B|}{p} + 2^{24} \frac{pq^4 |B|^2}{m^4 \beta}
\]

\[
\leq 2^{32} \frac{|B|}{p} + 2^{-79} \frac{pq^2}{m^4} |B|^2
\]

(\text{using (10)},

\[
\leq 2^{-71} \frac{|B|^2}{pm^2} + 2^{-79} \frac{|B|^2}{pm^2}
\]

\[
< 2^{-70} \frac{|B|^2}{pm^2},
\]

(\text{using (8)}), and so

\[
p^2 q \sum_{Q^*(y) \equiv 0 \bmod p} a(y) \leq 2^{-70} \frac{|B|^2}{m}.
\]

References

1. T. Cochrane, Small zeros of quadratic congruences modulo \(pq \), Mathematika 37, (1990), 261-272.

