ON A PROBLEM OF H. COHN FOR CHARACTER SUMS

TODD COCHRANE, DAVID GARTH, AND ZHIYONG ZHENG

Abstract. Cohn’s problem on character sums (see [6], p. 202) asks whether a multiplicative character on a finite field can be characterized by a kind of two level autocorrelation property. Let \(f \) be a map from a finite field \(F \) to the complex plane such that \(f(0) = 0, f(1) = 1, \) and \(|f(\alpha)| = 1 \) for all \(\alpha \neq 0. \) In this paper we show that if for all \(a, b \in F^* \), we have

\[
(q - 1) \sum_{\alpha \in F} f(b\alpha)\overline{f(\alpha + a)} = -\sum_{\alpha \in F} f(b\alpha)f(\alpha),
\]

then \(f \) is a multiplicative character of \(F. \) We also prove that if \(F \) is a prime field and \(f \) is a real valued function on \(F \) with \(f(0) = 0, f(1) = 1, \) and \(|f(\alpha)| = 1 \) for all \(\alpha \neq 0, \) then \(\sum_{\alpha \in F} f(\alpha)f(\alpha + a) = -1 \) for all \(a \neq 0 \) if and only if \(f \) is the Legendre symbol. These results partially answer Cohn’s problem.

1. Introduction

Let \(F = \mathbb{F}_q \) be the finite field in \(q = p^\gamma \) elements. We say that a complex valued function defined on \(F \) is a Cohn function if \(f(0) = 0, |f(\alpha)| = 1 \) for all \(\alpha \neq 0, \) and for all nonzero \(a \) in \(F, \)

\[
(1.1) \sum_{\alpha \in F} f(\alpha)f(\alpha + a) = -1.
\]

The last condition just means that the out of phase autocorrelations of \(f \) are all equal to -1. For example, if \(f = \theta \chi, \) where \(\theta \) is a complex constant of modulus one and \(\chi \) is a nontrivial multiplicative character on \(F \) (with \(\chi(0) := 0, \) then \(f \) is a Cohn function. In this case the sum in (1.1) is a well known Jacobi sum. The question then arises whether there are any other Cohn functions. This problem was posed by Harvey Cohn in [4], (p. 202).

To the best of our knowledge, there has been no progress on this problem. In this paper, we solve the problem for the special case of real valued functions defined on a prime field \(\mathbb{F}_p \) (see Theorem 2), and we also prove the following related theorem.

Theorem 1. Let \(f \) be a complex valued function on the finite field \(F \) with \(f(0) = 0, f(1) = 1 \) and \(|f(\alpha)| = 1 \) for all \(\alpha \neq 0. \) Then

\[
(1.2) (q - 1) \sum_{\alpha \in F} f(b\alpha)f(\alpha + a) = -\sum_{\alpha \in F} f(b\alpha)f(\alpha),
\]

for all \(a, b \in F^* \) if and only if \(f \) is a nontrivial multiplicative character on \(F. \)
If f is a nontrivial multiplicative character on F then it is easy to see that (1.2) holds for any $a, b \in F^*$. In this case the factor $f(b)$ can be cancelled from both sides of (1.2) and the equation simplifies to (1.1) which, as we noted above, is known to be valid. When $b = 1$ the equality in (1.2) is just the autocorrelation condition (1.1). Thus by Theorem 1, Cohn’s problem is equivalent to the following problem: Let f be a complex valued function on F with $f(0) = 0$, $f(1) = 1$, and $|f(\alpha)| = 1$ for all $\alpha \neq 0$. Then if equality in (1.2) holds when $b = 1$ and $a \in F^*$, does it hold for all $a, b \in F^*$?

To further explain condition (1.2), we note the following identity, which can be obtained readily by a regrouping of terms: For any complex valued function f on F and nonzero $b \in F$ we have

$$|\sum_{\alpha \in F} f(\alpha)|^2 = \sum_{\alpha \in F} f(b\alpha \overline{f(\alpha)}) + \sum_{a \in F^*} \{\sum_{\alpha \in F} f(b\alpha)f(\alpha + a)\}.$$

In particular, taking $b = 1$ we see that for any Cohn function f, we must have $\sum_{\alpha \in F} f(\alpha) = 0$. We also see that (1.2) holds for arbitrary $a, b \in F^*$ if and only if $\sum_{\alpha \in F} f(\alpha) = 0$ and the value of the sum on the left hand side of (1.2) does not depend on a.

Next, we consider the special case that F is a prime field and f is real valued. In this case we are able to completely solve the problem of Cohn.

Theorem 2. Let p be an odd prime and f be a real valued function on F_p with $f(0) = 0$, $f(1) = 1$, and $f(\alpha) = \pm 1$ for all $\alpha \neq 0$. Then

$$\sum_{\alpha \in F} f(\alpha)f(\alpha + a) = -1,$$

for all nonzero $a \in F$ if and only if f is the Legendre symbol on F_p.

We note that for any finite field F of characteristic 2 and any real valued function f on F satisfying $f(0) = 0$ and $f(\alpha) = \pm 1$ for all nonzero $\alpha \in F$, we trivially cannot have $\sum_{\alpha \in F} f(\alpha) = 0$. Thus there are no real valued Cohn functions on such fields.

2. Finite Fourier Transforms

Let F be the finite field in $q = p^\gamma$ elements and let tr denote the trace map from F to F_p. We denote by ψ the nontrivial additive character of F given by $\psi(\alpha) = e(tr(\alpha)/p)$. Let f be any complex valued function on F. The finite Fourier transform FTf of f is the complex valued function on F given by

$$\text{(2.1)} \quad FTf(a) = \sum_{\alpha \in F} f(\alpha)\psi(a\alpha), \quad \text{for } a \in F.$$

The inversion formula

$$f(a) = \frac{1}{q} \sum_{\alpha \in F} FTf(\alpha)\psi(-\alpha a),$$

allows us to recover f from FTf. In particular if $\chi = \chi_0$, the trivial multiplicative character on F (with $\chi_0(0) := 0$), then

$$\text{(2.2)} \quad FT\chi_0(a) = \begin{cases}
q - 1, & \text{if } a = 0; \\
-1, & \text{if } a \neq 0.
\end{cases}$$
If χ is a nontrivial multiplicative character on F (with $\chi(0) := 0$), then $FT\chi$ is just a Gauss sum, and we have $|FT\chi| = \sqrt{q}\chi_0$, that is,

(2.3) \[|FT\chi(a)| = \begin{cases} 0 & \text{if } a = 0; \\ \sqrt{q} & \text{if } a \neq 0. \end{cases} \]

In Lemma 2.2 below we observe that the autocorrelation condition (1.1) is equivalent to (2.3) and thus if the only Cohn functions with $f(1) = 1$ are nontrivial multiplicative characters then formula (2.3) becomes a characteristic property of a nontrivial multiplicative character. In order to prove this equivalence we need a few elementary properties of the finite Fourier transform. First we recall that if $f_1 \ast f_2$ is the convolution of two functions f_1, f_2 on F, defined by

$$f_1 \ast f_2(\alpha) = \sum_{\alpha_1 + \alpha_2 = \alpha} f_1(\alpha_1)f_2(\alpha_2),$$

then $FT(f_1 \ast f_2) = (FTf_1)(FTf_2)$. Let f^* be the function defined by

$$f^*(\alpha) = \overline{f(-\alpha)}.$$

It is easy to verify that

(2.4) \[FTf^* = \overline{FTf}. \]

In this context the autocorrelation condition (1.1) is just the statement that for any nonzero $a \in F$, $(f \ast f^*)(a) = -1$, that is, $f \ast f^* = FT\chi_0$ on F^*.

Lemma 2.1. If f is a complex valued function on a finite field F, then

(2.5) \[f \ast f^* = FT\chi_0, \]

if and only if

(2.6) \[|FTf| = \sqrt{q}\chi_0. \]

Proof. If (2.5) is true, then by (2.4), we have

$$|FTf|^2 = FT(f \ast f^*) = FT(FT(\chi_0)) = q\chi_0,$$

and so (2.6) follows. Conversely, if (2.6) is true, then by (2.4) we have

$$FT(f \ast f^*) = |FTf|^2 = q\chi_0 = FT(FT\chi_0),$$

and thus (2.5) holds true. \[\square \]

The following lemma is now immediate.

Lemma 2.2. If f is a complex valued function on a finite field F then f is a Cohn function if and only if $|f| = \chi_0$ and $|FTf| = \sqrt{q}\chi_0$.

To prove Theorem 1, we shall make use of the multiplicative Fourier transform. Let G be the group of multiplicative characters on F. For any function f on F the multiplicative Fourier transform of f, denoted $m(f)$, is a mapping from G into \mathbb{C} given by

(2.7) \[m(f)(\chi) = \sum_{\alpha \in F} f(\alpha)\chi(\alpha). \]

The following inversion formula is easy to obtain, (see [2], p. 46): For any $\alpha \in F$,

(2.8) \[f(\alpha) = \frac{1}{q-1} \sum_{\chi \in G} m(f)(\chi)\overline{\chi(\alpha)}. \]
3. Dedekind Determinant

Let V denote the space of all \mathbb{C}-valued functions on the finite field F, a q-dimensional vector space over \mathbb{C}. The set of additive characters $\{\psi_a \mid a \in F\}$, where $\psi_a(\alpha) := \psi(aa)$, is a basis for V. Another basis is provided by the set $\{\delta_a \mid a \in F\}$ of characteristic functions defined by $\delta_a(\alpha) = 1$ if $\alpha = a$, and $\delta_a(\alpha) = 0$ if $\alpha \neq a$. For $a \in F$ let $T_a : V \to V$ be defined by

$$T_af(\alpha) = f(\alpha + a),$$

for $\alpha \in F$.

For a fixed $f \in V$, let $T_f : V \to V$ be the linear map defined by

$$(3.1) \quad T_f = \sum_{a \in F} f(a)T_a.$$

If ψ_b is an additive character of F, it is easy to see that for any $\alpha \in F$,

$$T_f\psi_b(\alpha) = \sum_{a \in F} f(a)\psi_b(\alpha + a) = \psi_b(\alpha)FTf(b),$$

that is, $T_f\psi_b = FTf(b)\psi_b$. This means that ψ_b is an eigenvector of T_f with eigenvalue $FTf(b)$. Therefore, the diagonal matrix $\text{diag} \{FTf(b)\}_{b \in F}$ is the matrix for T_f with respect to the basis $\{\psi_b \mid b \in F\}$. Next, we consider the action of T_f on the basis $\{\delta_b \mid b \in F\}$. We note that for any $\alpha \in F$,

$$T_f\delta_b(\alpha) = \sum_{a \in F} f(a)T_a\delta_b(\alpha)$$

$$= \sum_{a \in F} f(a)\delta_b(\alpha + a)$$

$$= \sum_{a \in F} f(b - a)\delta_b(\alpha).$$

Thus, the matrix for T_f with respect to the basis $\{\delta_b \mid b \in F\}$ is $[f(a-b)]_{a,b \in F}$, (indexing the rows by a, and the columns by b), and we obtain the following similarity relationship,

$$\text{diag} \{FTf(a)\}_{a \in F} \sim [f(a-b)]_{a,b \in F}.$$

Lemma 3.1. If f is a function on F with $\sum_{a \in F} f(\alpha) = 0$, then we have

$$(3.2) \quad \text{diag} \{FTf(a)\}_{a \in F^*} \sim [f(a-b) - f(a)]_{a,b \in F^*},$$

and consequently

$$(3.3) \quad \prod_{a \in F^*} FTf(a) = q \cdot \det[f(a-b)]_{a,b \in F^*}.$$

Proof. Let V_1 be the $(q - 1)$-dimensional subspace of V consisting of all functions g with $\sum_{a \in F} g(\alpha) = 0$, and let f be a fixed element of V_1. It is easy to check that the function T_f maps V_1 into V_1. Now, $\{\psi_b \mid b \in F^*\}$ is a basis for V_1 and the matrix for T_f with respect to this basis is the diagonal matrix $\text{diag} \{FTf(b)\}_{b \in F^*}$. Another basis for V_1 can be obtained by shifting the characteristic functions δ_b. For any $b \in F$ let $\eta_b := \delta_b - \frac{1}{q}$. It is easy to see that $\eta_b \in V_1$ for any $b \in F$ and that the set of all η_b, $b \in F$, spans V_1. Moreover, since $\eta_0 = -\sum_{b \in F^*} \eta_b$, it follows that
\{ \eta_b \mid b \in F^* \} \) is a basis for \(V_1 \). Now, since \(f \in V_1 \) it follows that \(T_f \) applied to any constant function is just zero. Thus for any nonzero \(b \),

\[
T_f(\eta_b) = T_f(\delta_b) = \sum_{a \in F} f(b - a)\delta_a = \sum_{a \in F} f(b - a)\eta_a = \sum_{a \in F^*} (f(b - a) - f(b))\eta_a,
\]

and so the matrix for \(T_f \) on \(\{ \eta_b \mid b \in F^* \} \) is \([f(b - a) - f(a)]_{a,b \in F^*} \). The relationship in (3.2) is now immediate. The determinant of \([f(b - a) - f(a)]_{a,b \in F^*} \) may be readily calculated by adding the columns of the matrix together. \(\square \)

We consider now the \((q - 1) \)-dimensional subspace \(W \) of \(V \) defined by

\[
W := \{ f : f \in V \text{ such that } f(0) = 0 \}.
\]

The set of multiplicative characters, \(\{ \chi \} \), is a basis for \(W \). For any \(a \in F^* \) we let \(T_a : W \to W \) be defined by \(T_ag(\alpha) = g(a\alpha) \) for any \(g \in W \), \(\alpha \in F \). For a fixed \(f \in W \), let \(T_f : W \to W \) be the linear map defined by

\[
T_f = \sum_{a \in F} f(a)T_a.
\]

If \(\chi \) is a multiplicative character, it follows that

\[
T_f \chi = m(f)(\chi)\chi,
\]

where \(m(f) \) is the multiplicative Fourier transform given by (2.7). To see this, note that for any \(a \in F \), we have

\[
T_f \chi(\alpha) = \sum_{a \in F} f(a)T_a \chi(\alpha) = \sum_{a \in F} f(a)\chi(a)\chi(\alpha) = m(f)(\chi)\chi(\alpha).
\]

Thus, \(\chi \) is an eigenvector of the linear map \(T_f \) with eigenvalue \(m(f)(\chi) \) and so the matrix for \(T_f \) acting on the basis \(\{ \chi \} \) is the diagonal matrix \(\text{diag} \{ m(f)(\chi) \}_{\chi \in G} \). On the other hand, the matrix of \(T_f \) with respect to the basis \(\{ \delta_b \mid b \in F^* \} \) is \([f(a^{-1}b)]_{a,b \in F^*} \). We obtain

Lemma 3.2. For any \(f \in W \), we have

\[
\text{diag} \{ m(f)(\chi) \}_{\chi \in G} \sim [f(a^{-1}b)]_{a,b \in F^*},
\]

and consequently,

\[
\sum_{\chi \in G} m(f)(\chi) = (q - 1)f(1),
\]

and

\[
\prod_{\chi \in G} m(f)(\chi) = \det [f(a^{-1}b)]_{a,b \in F^*}.
\]

The determinant in (3.8) is called a Dedekind determinant (see [3], p. 89).
4. Proof of Theorem 1

Lemma 4.1. If \(f \) is a Cohn function on a finite field \(F \) then the matrix \([f(a-b)]_{a,b \in F^*} \) is nonsingular.

Proof. If \(f \) is a Cohn function on \(F \), then as we noted in the introduction, \(\sum_{\alpha \in F} f(\alpha) = 0 \). It follows from (3.3) that
\[
q \cdot \det [f(a-b)]_{a,b \in F^*} = \prod_{a \in F^*} FTf(a).
\]
But, by Lemma 2.2 we have
\[
|FTf(a)| = \sqrt{q} \quad \text{for} \quad a \neq 0.
\]
It follows that
\[
(4.1) \quad |\det [f(a-b)]_{a,b \in F^*}| = q^{\frac{q-1}{2}},
\]
and therefore the matrix is nonsingular. \(\square \)

Suppose now that \(f \) is a complex valued function with \(f(0) = 0 \), \(f(1) = 1 \) and \(|f(\alpha)| = 1 \) for all \(\alpha \neq 0 \), such that (1.2) holds for all \(a,b \in F^* \). Let
\[
(4.2) \quad A = [f(ab^{-1})]_{a,b \in F^*}, \quad \text{and} \quad B = [f(a-b)]_{a,b \in F^*}.
\]
We will show that \(\text{rank}(A) = 1 \). By Lemma 4.1, we know \(B \) is nonsingular, and so it is enough to show that \(\text{rank}(BA) = 1 \). Let \(BA = [g(a,b)]_{a,b \in F^*} \). In view of (1.2), we have
\[
g(a,b) = \sum_{\alpha \in F^*} f(b^{-1}\alpha)f(a-\alpha)
= \frac{1}{1-q} \sum_{\alpha \in F^*} f(-b^{-1}\alpha)f(\alpha),
\]
a value independent of \(a \). Thus \(\text{rank}(BA) = 1 \). Now by Lemma 3.2, we have
\[
(4.3) \quad \text{rank}(\text{diag } \{m(f)(\chi)\}_{\chi \in G}) = \text{rank}(A) = 1.
\]
Thus, since \(m(f)(\chi_0) = 0 \), there exists a nontrivial multiplicative character \(\rho \) such that
\[
(4.4) \quad m(f)(\chi) = 0 \quad \text{if} \quad \chi \neq \rho \quad \text{and} \quad m(f)(\rho) \neq 0.
\]
It follows from (2.8) that \(f \) is just a multiple of \(\bar{\rho} \). Since \(f \) and \(\bar{\rho} \) take on the same value at one we must have \(f = \bar{\rho} \), identically. This completes the proof of theorem 1.

5. Proof of Theorem 2

Let \(p \) be an odd prime. To prove Theorem 2, we work in the cyclotomic field \(Q(\xi) \), where \(\xi = e^{2\pi i/p} \). The following two lemmas are known.

Lemma 5.1. If \(u \) is an algebraic integer all of whose conjugates have absolute value 1, then \(u \) is a root of unity.

Proof. See [5], Lemma 11.6. \(\square \)

Lemma 5.2. The only roots of unity in \(Q(\xi) \) are \(\pm \xi^s \), with \(s \) a rational integer.

Proof. See [5], Lemma 11.4. \(\square \)
Let f be a real valued function on the prime field \mathbb{F}_p with $f(0) = 0$, $f(1) = 1$, $f(\alpha) = \pm 1$ for $\alpha \neq 0$, and such that for any nonzero $a \in F$,
$$\sum_{\alpha \in F} f(\alpha)f(\alpha + a) = -1.$$
Then f is a real Cohn function on \mathbb{F}_p. By Lemma 2.2 we have
\[(5.1) \quad FTf(0) = 0, \quad \text{and} \quad |FTf(\alpha)|^2 = p, \quad \text{for} \alpha \neq 0.\]
Let $\chi_2(\alpha)$ be the Legendre symbol of \mathbb{F}_p, namely $\chi_2(0) = 0$, $\chi_2(\alpha) = 1$ if $\alpha \in (\mathbb{F}_p^*)^2$, and $\chi_2(\alpha) = -1$ if $\alpha \notin (\mathbb{F}_p^*)^2$. For $\alpha \neq 0$, let
\[(5.2) \quad \eta(\alpha) = FTf(\alpha)/FT\chi_2(\alpha).\]
By (2.3) we know that $|FT\chi_2(\alpha)|^2 = p$, for $\alpha \neq 0$. Thus if $\alpha \neq 0$, it follows that $|\eta(\alpha)| = 1$. Also, since $f(\alpha) = \pm 1$ for $\alpha \neq 0$, it is easy to see that $\eta(\alpha) \in \mathbb{Q}(\xi)$. We claim that $\eta(\alpha)$ is in fact an algebraic integer in $\mathbb{Q}(\xi)$. To see this, let $<a>$ denote the principal ideal generated by an algebraic integer $a \in \mathbb{Z}[\xi]$. Then (see eg. [1] chapter 13, section 2),
$$<FTf(\alpha) > < FT\chi_2(\alpha)> = < FT\chi_2(\alpha)> = < p > = 1 - \xi >^{p-1},$$
and thus since $1 - \xi >$ is a prime ideal with $1 - \xi >^{p} = 1 - \xi >^{p-1}$. Therefore $\eta(\alpha) \in \mathbb{Z}[\xi].$

Next, we consider the conjugates of $\eta(\alpha)$. The Galois Group G of $\mathbb{Q}(\xi)$ over \mathbb{Q} is the set of automorphisms $\sigma_n : n \in \mathbb{F}_p^*$ defined by $\sigma_n(\xi) = \xi^n$. For any $n \in \mathbb{F}_p^*$ and $b \in \mathbb{F}_p$ we have $\sigma_n(\psi(b)) = \psi(nb)$ and thus for any $\alpha \in \mathbb{F}_p^*$,
\[(5.3) \quad \sigma_n(\eta(\alpha)) = \sigma_n(FTf(\alpha)/FT\chi_2(\alpha)) = \eta(n\alpha).\]
From the discussion above we see that all conjugates of $\eta(1)$ are algebraic integers of absolute value 1, and so by Lemmas 5.1 and 5.2 we have $\eta(1) = \pm \xi^s = \pm \psi(s)$ for some integer s. Then for any $\alpha \neq 0 \in \mathbb{F}_p$, it follows from (5.3) that
$$\eta(\alpha) = \sigma_n(\eta(1)) = \pm \xi^{s\alpha} = \pm \psi(s\alpha).$$
By the definition of $\eta(\alpha)$, (5.2), we have for any $\alpha \in \mathbb{F}_p^*$,
\[(5.4) \quad FTf(\alpha) = \pm \psi(s\alpha)FT\chi_2(\alpha) = \pm FTg(\alpha),\]
where g is the translate of χ_2 given by $g(x) := \chi_2(x - s)$. We note that both sides of (5.4) are zero when $\alpha = 0$. Thus we must have $f = \pm g$ identically on \mathbb{F}_p. Since $f(0) = 0$ and $f(1) = 1$ it follows that $f = \chi_2$ identically.

Acknowledgment. The authors are grateful to Professor Bahman Saffari for his valuable suggestions.

References
Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: cochrane@math.ksu.edu

E-mail address: drgarth@math.ksu.edu

Department of Mathematics, Zhongshan University, Guangzhou, P.R. China
E-mail address: addsr03@zsu.edu.cn