Solutions to HW 7:

1) Let \(\varepsilon > 0 \) be given. Since \(a_n \to L \), \(\forall N \in \mathbb{N} \), \(n > N \Rightarrow |a_n - L| < \varepsilon \).

Now, since \(\{a_n\} \) is an increasing sequence, \(a_k \leq a_N \forall k \leq N \). Set \(k = N \). Then for \(k > K \), \(a_k \geq K = N \) and so \(|a_k - L| < \varepsilon \). \(\therefore \varepsilon > 0 \).

2) If \(\{a_n\} \) converges to \(L \), then so does every subsequence of \(\{a_n\} \), by problem 1. Therefore \(L \) is the only cluster point.

3) If \(a_n \to L \) as \(n \to \infty \), then \(\varepsilon > 0 \) such that \(\forall N \in \mathbb{N} \), \(\forall n > N \) with \(|a_n - L| < \varepsilon \). Let \(\{a_{n_k}\} \) be the subsequence consisting of all terms of the original sequence satisfying \(* \). Since \(\{a_n\} \) is bounded, so is \(\{a_{n_k}\} \) and so by Bolzano-Weierstrass, \(\{a_{n_k}\} \) has a cluster pt \(C \). Clearly \(C \neq L \) by \(* \). Then \(\{a_{n_k}\} \) has a subsequence converging to \(C \), but this subsequence is also a subsequence of \(\{a_n\} \) and so \(C \) is a cluster pt of \(\{a_n\} \), a contradiction.

4) Since \(\{T_n^2\} \) converges it is Cauchy so given \(\varepsilon > 0 \), \(\exists N \in \mathbb{N} \) s.t. \(|T_n - T_m| < \varepsilon \).

Now \(|S_n - S_m| = \sum_{k=m}^{n} |a_k| \leq \sum_{k=m}^{n} |a_k| = |T_n - T_m| \).

Thus if \(n \geq m \) then \(|S_n - S_m| \leq |T_n - T_m| < \varepsilon \), so \(\{S_n\} \) is Cauchy.

Therefore, \(\{S_n\} \) converges. If a series converges absolutely, then it converges.

5) a) Since \(f \) is unit (and on \((a, b) \)), given \(\varepsilon > 0 \), \(\exists \delta > 0 \) s.t. \(|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \). Since \(\{a_n\} \) converges, it is Cauchy, so given \(\exists N \in \mathbb{N} \), \(n, m > N \Rightarrow |a_n - a_m| < \delta \). We assume \(a \in (a, b) \) \(\forall n \in \mathbb{N} \).

Then for \(n, m > N \) we have \(|x - y| < \delta \Rightarrow |f(a_n) - f(a_m)| < \varepsilon \).

\(\therefore \{f(a_n)\} \) is Cauchy, and so it converges.
Let \(\{a_n\} \) be a sequence with \(a_n \to b \) as \(n \to \infty \). By (a), \(f(a_n) \) converges. Say \(f(a_n) \to L \) as \(n \to \infty \). Then given \(\varepsilon > 0 \), \(\exists N_1 \) such that \(n > N_1 \Rightarrow |f(a_n) - L| < \varepsilon/2 \). Since \(f \) is uniformly continuous, \(\exists N_2 \) such that \(n > N_2 \Rightarrow |f(x) - f(y)| < \varepsilon/2 \). Finally, since \(a_n \to b \), \(\exists N_2 \) such that \(n > N_2 \Rightarrow |a_n - b| < \delta \). Suppose \(n > \max(N_1, N_2) \), then since and that \(b - \delta < x < b \). Then since \(a_n, x \in (b - \delta, b) \) we have \(|a_n - x| < \delta \) and so by \(\delta \), \(|f(a_n) - f(x)| < \varepsilon/2 \). Thus

\[
|f(x) - L| = |f(x) - f(a_n) + f(a_n) - L| \leq |f(x) - f(a_n)| + |f(a_n) - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,
\]

for \(b - \delta < x < b \). QED.

5) Let \(x \in (a, b) \). Set \(\delta = \min(\frac{b-x}{a}, \frac{x-a}{b}) \). Then \((x-\delta, x+\delta) \) is a NBD of \(x \) with \((x-\delta, x+\delta) \subset (a, b) \). i.e. \((a, b) \) is open.

b) Let \(\mathcal{U} = \{ U_x \}_{x \in [a, b]} \) be a covering of \([a, b]\) by open sets. For any \(x \in [a, b] \), \(\exists U_x \in \mathcal{U} \) with \(x \in U_x \), since \(\mathcal{U} \) covers \([a, b]\). Since \(U_x \) is open, \(\exists \) open interval \(I_x \) with \(x \in I_x \subset U_x \). Then \(\mathcal{I} = \{ I_x \}_{x \in [a, b]} \) is a covering of \([a, b]\) by open intervals. By Heine-Borel, \(\mathcal{I} \) has a finite subcovering \(\{ I_{x_1}, I_{x_2}, \ldots, I_{x_k} \} \). Then \(\{ U_{x_1}, U_{x_2}, \ldots, U_{x_k} \} \) is a finite subcovering of \(\mathcal{U} \), since

\[
[a, b] = \bigcup_{j=1}^{k} I_{x_j} \subseteq \bigcup_{i=1}^{k} U_{x_k}.
\]