Let \(f : S \to T \) (where \(S \) and \(T \) are subsets of \(\mathbb{R} \)) be a function with domain \(S \) and range \(T \). Prove that \(f \) has an inverse \(g : T \to S \) if and only if \(f \) is one-to-one on \(S \). (Verify all 3 properties of \(g \) under the inverse function definition.)

Suppose \(f : S \to T \) and \(f \) has an inverse \(g : T \to S \).

Suppose \(x_1, x_2 \in S \) with \(f(x_1) = f(x_2) \). Then \(g \circ f(x_1) = g \circ f(x_2) \), \(x_1 = x_2 \) \(\Rightarrow \) \(f \) is one-to-one on \(S \).

Now prove the converse:

Suppose \(f : S \to T \) is one-to-one function. Define \(g : T \to S \) by setting \(g(y) = x \) where \(x \) is the unique \(x \) in \(S \) such that \(f(x) = y \). Then \(g \circ f(x) = g(y) = x \) \(\forall x \in S \) and \(f \circ g(y) = f(x) = y \) \(\forall y \in T \) \(\Rightarrow \) \(g \) is an inverse of \(f \).

2. Let \(f \) be a real valued function defined on \(I = (a, b) \). Suppose that for any monotone increasing sequence \(\{a_n\} \) with \(a \leq a_n \leq b \) \(\forall n \to \infty \), we have \(f(a_n) \to f(b) \). Prove, for \(\forall \varepsilon > 0 \), that \(f \) is left continuous at \(b \). (Proof by contradiction as for The 2.4d)

Proof by contradiction: Suppose that \(\lim_{x \to b^-} f(x) \neq f(b) \)

Then \(\exists \varepsilon > 0 \) \(\exists \delta > 0 \) \(\exists x \in (b - \delta, b) \) \(\exists \delta | f(x) - f(b) \| = \varepsilon \).

Now define \(\{a_n\} \) inductively as follows: for \(\delta = \min \left(\frac{1}{n}, b - a_{n-1} \right) \), \(\forall n \exists a_n \in (b - \delta, a_{n-1}) \) and \(|f(a_n) - f(b)| = \varepsilon \).

However, \(b - \frac{1}{n} < a_n < b \), then \(a_n \to b \) \(a \to b \) by the squeeze law.

Also, \(b - a_n < b - a_{n-1} \Rightarrow a_n > a_{n-1} \Rightarrow \{a_n\} \) is a monotone increasing sequence and converges to \(b \). It follows that \(f(a_n) \to f(b) \), a contradiction.

\(\therefore f(x) = f(b) \Rightarrow f \) is left continuous at \(b \).
3. Let I be an interval of real numbers. A subset S of I is called a dense subset of I if every point of I is a limit point of S.

(a) Prove that S is a dense subset of I if every open subinterval J of I contains at least one point of S. (In particular, the set of rationals in I and the set of irrationals in I are both dense subsets of I.)

=>
Suppose S is a dense subset of I, and let J be an open subinterval of I. Since every point of I is a limit point of S, every pt. of J is a limit pt. of S. Let a be the mid-point of J and let \(\delta = \frac{|J|}{2} \). Then the \(\delta \)-Nbd of \(a \), i.e., the interval \(J \), contains a point of S.

<=
Suppose every open subinterval of I contains at least one point of S. Prove that S is a dense subset of I. i.e., prove that every point of I is a limit point of S.

Let a be any point in I. Then \(\forall \delta > 0 \), the interval \((a-\delta, a+\delta) \) will include some subinterval J of I with a in J. \(\Rightarrow \) (a-\(\delta \), a+\(\delta \)) contains at least one point of S other than \(a \) \(\Rightarrow \) Every del. Nbd of \(a \) contains a point of S \(\Rightarrow \) a is a limit point of S.

Since any point of I is a limit point of S, S is a dense subset of I.
3(b) If \(S \) is a dense subset of \(I \) and \(a \in I \), prove that there is a sequence \(\{x_n\} \) of points in \(S \) such that \(x_n \to a \) as \(n \to \infty \).

* Suppose \(S \) is a dense subset of \(I \), then every point of \(I \) is a limit point of \(S \).

 Let \(a \in I \), then \(a \) is a limit point of \(S \).

 \[
 \Rightarrow \text{every NEE of } a \text{ contains a point of } S.
 \]

 Let \(x_n \) be a point in \(S \text{ for } n \in \mathbb{N} \) with \(x_n \in S \).

 Then \(x_n \to a \) as \(n \to \infty \).

3(c) Suppose \(f, g \) are continuous functions on \(I \) that agree on a dense subset \(S \) of \(I \), that is, \(f(x) = g(x) \) for \(x \in S \).

Prove that \(f(x) = g(x) \) for all \(x \in I \).

* Let \(a \) be any point in \(I \). Since \(S \) is a dense subset of \(I \), \(a \) is a limit point of \(S \).

 \[
 \exists \text{ a sequence } \{x_n\} \text{ of points in } S \text{ with } x_n \to a \text{ as } n \to \infty .
 \]

 Since \(f, g \) are continuous on \(I \), \(f, g \) are continuous at \(a \).

 \[
 \Rightarrow f(a) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(a).
 \]

 Since \(x_n \in S \),

 \[
 \Rightarrow f(x) = g(x) \text{ for all } x \in I.
 \]