1] Prove any open interval \((a, b)\) of real numbers contains a rational number.

Proof: By the Archimedean property there exists \(n \in \mathbb{N} \) with \(n > \frac{1}{b-a}\), that is, \(\frac{1}{n} < b-a\). Consider the set

\[S = \{ k \in \mathbb{Z} : k/n < b \} \]

Set \(S\) is bounded above by \(nb\) and so by the Max Ell Principle it has a max \(m\). We claim that \(m/n \in (a, b)\). Certainly \(m/n < b\), since \(m \in S\). If \(m/n \leq a\) then \(m+1/n < a+(b-a) = b\) and so \(m+1\in S\) contradicting the maximality of \(m\). Therefore, \(m/n > a\).

2] See 1.7B7, B8 on following pages.

3] Prove \(e\) is irrational.

Proof by contradiction. Suppose \(e\) is rational, say \(e = \frac{p}{q}\) with \(p, q \in \mathbb{N}\). Then \(\frac{1}{e} = \sum_{k=0}^{\infty} \frac{1}{k!}\)

\[e! \cdot \frac{1}{e} = \sum_{k=0}^{\infty} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{q!}{k!} + \sum_{k=q+1}^{\infty} \frac{q!}{k!} \]

\[\Rightarrow (q-1)! \cdot p = e! + \frac{q!}{2!} + ... + \frac{q!}{q!} + \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + ... \]

Now for \(k=0, \ldots, q\), \(\frac{q!}{k!} \in \mathbb{N}\) and thus

\[\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + ... = (q-1)! \cdot p - q! - ... - \frac{q!}{e!} \in \mathbb{Z} \]

but since the LHS is positive it is in fact \(q+1\), thus

\[\frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + ... < \frac{1}{q+1} + \frac{1}{(q+1)^2} + \frac{1}{(q+1)^3} + ... \]

\[= \frac{1}{q+1} \cdot \frac{1}{1-\frac{1}{q+1}} = \frac{1}{e} \leq 1 \]

but this contradicts fact that 1 is the smallest positive integer.
(c) \(1 + a + \cdots + n = \frac{n(n+1)}{2}\).

Let \(n=1\), then \(1 = \frac{1 \cdot 2}{2}\) and so the above holds true.

Suppose that the above holds for \(n\). Then

\[(1+2+\cdots+n)(n+1) = \frac{n(n+1)}{2} + (n+1)\]

\[= (n+1)\left[\frac{n}{2} + 1\right] = (n+1)\left[\frac{n+2}{2}\right] = \frac{(n+1)(n+2)}{2} + (n+1)\]

Thus the formula is true for \(n+1\). Q.E.D.

(e) \(1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots+n)^2\)

For \(n=1\), \(1^3 = 1^2\), so the formula is valid.

Suppose the formula is true for \(n\). Then

\[\left[1^3 + \cdots + n^3\right] + (n+1)^3 = \left(1+2+\cdots+n\right)^2 + (n+1)^2\]

\[= \left[\frac{n(n+1)}{2}\right]^2 + (n+1)^2\] \hspace{1cm} \text{by (a)},

\[= (n+1)^2 \left[\frac{n^2}{4} + (n+1)\right]\]

\[= \frac{(n+1)^2}{4} \left[n^2 + 2n + 1\right]\]

\[= \left[\frac{(n+1)(n+2)}{2}\right]^2\]

\[= (1+2+\cdots+n+1)^2\] \hspace{1cm} \text{by (a)},

and so the formula is true for \(n+1\). Q.E.D.
\[A2 \] (f) \quad S = \left\{ \frac{2}{3} x \mid 1 \leq x \leq 4 \right\}.

Suppose that \(x \geq 4 \); then \(x \in S \iff x + x - 4 \leq 6 \iff x \leq 5 \). Thus \([4, 5] \subset S \).

Suppose that \(0 \leq x \leq 4 \); then \(x \in S \iff x - (x - 4) \leq 6 \iff 4 \leq 6 \), which is always true. Thus \([0, 4] \subset S \).

Suppose that \(x \leq 0 \); then \(x \in S \iff -x - (x - 4) \leq 6 \iff -2x \leq 2 \iff x \geq -1 \). Thus \([-1, 0] \subset S \).

No together we have that: \([-1, 0] \cup [0, 4] \cup [4, 5] = S \).

That is \(S = [-1, 5] \). \(\sup_S x = 5 \), \(\inf_S x = -1 \).

1.7

\[\mathbb{P}(S) = \frac{2}{3} \sum_{k=1}^{\infty} \frac{1}{k} = \frac{2}{3} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \right) \Rightarrow \sup_S x = 5 \] \(\inf_S x = 1 \) (by inspection).

Verify that \(\sup_S x = 5 \). It suffices to show that \(S \) is an upper bound for \(S \), since \(5 \) is in \(S \), and so there can be no smaller upper bound. Let \(n \) be a positive integer. Then \(n \geq 1 \), and so \(1 \leq n \implies 4 \leq 4n \implies \frac{4}{n} \leq 4 \). Thus \(1 + \frac{4}{n} \leq 5 \). Thus every \(x \) of \(S \) is \(\leq 5 \).

Verify that \(\inf_S x = 1 \). First we show that \(1 \) is a lower bound. Let \(n \in \mathbb{N} \). Then \(n > 0 \) and so \(\frac{4}{n} > 0 \). Thus \(1 + \frac{4}{n} > 1 \). Now we show that \(1 \) is the greatest lower bound. Suppose not. Then \(\exists e > 0 \) such that \(1 + e \not\leq 1 + \frac{4}{n} \) for all \(n \in \mathbb{N} \).

But this implies that \(\frac{4}{n} \geq e \), that is, \(n \leq \frac{4}{e} \), which contradicts the archimedean property of the reals. Hence \(1 = \inf_S \).
a) Show that $\frac{1}{2} (a+b+|a-b|) = \max (a, b)$.

Case i: Suppose that $a \geq b$. Then
\[
\frac{1}{2} (a+b+|a-b|) = \frac{1}{2} (a+b+(a-b)) = \frac{1}{2} (2a) = a = \max (a, b).
\]

Case ii: Suppose that $b \geq a$. Then
\[
\frac{1}{2} (a+b+|a-b|) = \frac{1}{2} (a+b+(b-a)) = \frac{1}{2} (2b) = b = \max (a, b).
\]

b) Claim: $\frac{1}{2} (a+b-|a-b|) = \min (a, b)$.

Case i: $a \geq b$. Let $\text{LHS} = \frac{1}{2} (a+b-(a-b)) = b = \min (a, b)$

Case ii: $a \leq b$. Let $\text{LHS} = \frac{1}{2} (a+b+(b-a)) = a = \min (a, b)$.

1.7B b) Show that $(1-x)^n \leq 1-nx + \frac{n(n-1)}{2} x^2$, $0 \leq x < 1$.

For $n=1$, $1-x = 1-x$, so the above is true.

Suppose the above is true for n. Then
\[
(1-x)^{n+1} = (1-x)^n (1-x) \leq (1-nx + \frac{n(n-1)}{2} x^2) (1-x)
\]

because $1-x > 0$, thus $x < 1$.

\[
= 1-nx-x+n x^2 + \frac{n(n-1)}{2} x^2 - \frac{n(n-1)}{2} x^3
\]

\[
= 1-(n+1)x + \left(1 + \frac{n-1}{2}\right)n x^2 - P, \text{ where } P = \frac{n(n-1)}{2} x^3
\]

\[
= 1-(n+1)x + \frac{(n+1)n}{2} x^2 - P
\]

\[
\leq 1 - (n+1)x + \frac{(n+1)(n+1)}{2} x^2, \text{ since } P \geq 0. \text{ (because } x \geq 0)\]

Thus, the inequality is valid for $n+1$. QED

1.7B 7) Show that every nonempty set S bounded below has an infimum.

Let S be a nonempty subset of \mathbb{R}, and let m be a lower bound for S. Let $T = \frac{3}{2} - x$ if $x \in S \subseteq \mathbb{R}$, and let $M = m$.
Then \(M \) is an upper bound for \(T \), for if \(x \in S \) then \(x \geq m \implies -x \leq -m \implies -x \leq M \). Thus \(T \) is a nonempty subset of \(\mathbb{R} \) bounded above and so by Thm 1.5.6, \(T \) has a supremum \(M_0 \). Let \(m_0 = -M_0 \). We claim that \(m_0 = \inf_S x \). There are two things to check.

(i) \(m_0 \) is a lower bound for \(S \), for if \(x \in S \) then \(-x \in T\)
and so \(-x \leq M_0 \), that is \(x \geq -M_0 = m_0 \).

(ii) If \(m \) is any lower bound for \(S \), then \(-m \) is an upper bound for \(T \) and so \(-m \geq M_0 \). Thus \(m \leq -M_0 = m_0 \). That is \(m_0 \) is the greatest lower bound for \(S \).

1.7

8. Show that if \(S \) is bounded below and \(m_0 = \inf_S x \), then for each \(y > m_0 \) \(\exists x \in S \) for which \(y > x \geq m_0 \).

Let \(S \), suppose the statement is false. Then \(\exists y \) such that \(y > m_0 \) and such that the interval \([m_0, y)\) contains no \(x \in S \). This implies that \(y \) is a lower bound for \(S \) (since \(m_0 \) already is a lower bound). But \(y > m_0 \), contradicting the fact that \(m_0 \) is the greatest lower bound for \(S \). Thus, the statement must be true.