ALGEBRAIC SYSTEMS
Exam 3
December 2, 2011
The point value of each problem is given in the margin. Total = 80 points.

(9) 1. Indicate whether the given polynomial is reducible or irreducible over the given field and explain why. You do not need to factor the polynomial.
 a) $x^5 + x + 1$ over \mathbb{Z}_3.
 b) $x^5 + 4x - 24$ over \mathbb{R}.
 c) $x^3 - x + 2$ over \mathbb{Q}.

(8) 2. Prove the following part of the factor theorem: Let F be a field, $f(x) \in F[x]$ and $a \in F$. If a is a zero of $f(x)$ then $(x - a)$ is a factor of $f(x)$.
3. Completely factor the polynomial $x^3 - 5x + 2$ over \mathbb{Q} and over \mathbb{R}. (I recommend not using Cardano’s method!)

4. a) Suppose that $f(x)$ is a fifth degree polynomial over \mathbb{Q}, with no zero in \mathbb{Q}. What are the possible factorizations of $f(x)$ over \mathbb{Q} into a product of irreducibles?

b) State the Fundamental Theorem of Algebra.

c) Let F be a given field and $f(x) \in F[x]$. Define (precisely) what it means for $f(x)$ to be reducible over F:

d) Give examples of three different cyclic groups of order 4. Make sure to specify the binary operation.
5. Prove the conjugate zero theorem: If \(f(x) \in \mathbb{R}[x] \) and \(z \in \mathbb{C} \) is a zero of \(f(x) \) then \(\overline{z} \) is also a zero of \(f(x) \).

6. Let \(G \) be the group \((\mathbb{Z}_{14}, +)\).
 a) What is the identity element?

 b) What is the inverse of \(8 \) in \(G \)? Explain.

 c) What is the order of \(7 \) in \(G \)? Explain.

7. Determine whether the following sets are groups under the given operation. If it is a group just say so, and give the identity element. If it is not a group, state one axiom that fails.
 a) The set of even integers \(E = \{2n : n \in \mathbb{Z}\} \) under multiplication.

 b) The set of nonnegative rational numbers \(\{x : x \in \mathbb{Q}, x \geq 0\} \) under addition.

 c) The set of positive real numbers under multiplication.
8. Let U_{15} be the multiplicative group of units (mod 15).
 a) List the elements of U_{15}.

 b) What is the inverse of 4 in U_{15}?

 c) Find the subgroup $\langle 2 \rangle$, generated by 2.

 d) Find the order of 2 in U_{15}.

9. Let $C_{10} = \langle a \rangle$ denote a cyclic group of order 10 under multiplication. (For example, C_{10} could be U_{11} or $\langle \omega \rangle$ where $\omega = e^{2\pi i/11}$.)
 a) Find all subgroups of C_{10}.

 b) Find all generators for C_{10}.

10. Find a monic polynomial $f(x)$ of degree 5 over the rationals such that $f(0) = f'(0) = 0$, $f(2 - 3i) = 0$, $f(1) = 20$. (Your final answer can be expressed as a product, but the factors should all have rational coefficients.)