ALGEBRAIC SYSTEMS
Exam 3
December 3, 2008
The point value of each problem is given in the margin. Total = 80 points.

(12) 1. Indicate whether the given polynomial is reducible or irreducible over the given field and explain why.

a) $X^3 - 7$ over \mathbb{Q}.

b) $1 + x + x^5$ over \mathbb{Z}_3.

c) $x^7 + x + a$ over \mathbb{R}, where a is a nonzero real number.

(8) 2. Prove the following part of the factor theorem: Let F be a field and $f(x) \in F[x]$. If $a \in F$ is a zero of $f(x)$ then $(x-a)$ is a factor of $f(x)$.
3. Completely factor the polynomial \(x^3 + 2x - 3 \) over \(\mathbb{R} \) and then over \(\mathbb{C} \). (Hint: 1 is obviously a zero, so don’t use Cardano’s method!)

4. Short answer.
 a) Suppose that \(f(x) \) is a fourth degree polynomial over \(\mathbb{R} \) with no zero in \(\mathbb{R} \). What are the possible factorizations of \(f(x) \) into a product of irreducible polynomials over \(\mathbb{R} \)?

 b) What are the possible factorizations of a fourth degree polynomial \(f(x) \) over \(\mathbb{Q} \) into irreducible polynomials over \(\mathbb{C} \).

 c) Find a polynomial \(f(x) \) of degree 4 over \(\mathbb{R} \) such that \(f(2) = f'(2) = 0 \) and \(f(i) = 0 \).

 d) State the Fundamental Theorem of Algebra.
5. Prove the conjugate zero theorem: If \(f(x) \in \mathbb{R}[x] \) has a zero \(z \in \mathbb{C} \), then \(\overline{z} \) is also a zero of \(f(x) \).

6. State the four axioms required for a set \(G \) to be a group under a binary operation \(\ast \).

7. Determine whether the following sets are groups under the given operation. If it is a group just say so, and give the identity element. If it is not a group, state one axiom that fails.
 a) The set of even integers \(\mathbb{E} = \{2n : n \in \mathbb{Z}\} \) under addition.
 b) The set of positive real numbers \(\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} \) under addition.
 c) The set of positive real numbers \(\mathbb{R}^+ \) under multiplication.
 d) The set of nonzero elements of \(\mathbb{Z}_{25} \) under multiplication.
(8) 5) Let U_7 be the multiplicative group of units (mod 7).

a) What is the order of U_7?

b) Find the subgroup $< 3 >$

c) Give the order of 2 in U_7 (and show why). $: \text{ord}(2) =$

d) Is U_7 a cyclic group? Explain.

(6) 9) a) Prove that if G is a group and $x, y \in G$, then $(xy)^{-1} = y^{-1}x^{-1}$.

(2) b) If G is an abelian group and $x, y \in G$, what does $(xy^{-1}x^{-1})^{-1}$ simplify to? (explain)