ALGEBRAIC SYSTEMS

Exam 3
December 1, 2006

The point value of each problem is given in the margin. Total = 80 points.

(10) 1) Indicate whether the given polynomial is reducible or irreducible over the given ring. Circle the correct answer. No work needs to be shown.
 a) \(5x^2 - 15\) over \(\mathbb{Q}\). reducible irreducible
 \[5(x^2 - 3), \text{ since } 5 \text{ is a unit in } \mathbb{Q} \text{ and } x^2 - 3 \text{ has no rational zero}
 \text{ the poly. is irreducible over } \mathbb{Q}\]
 b) \(x^4 + 1\) over \(\mathbb{Z}_2\). reducible irreducible
 \(2x^2 + 1 = 0\) for \(x = 1, 1 = 0\), thus \((x - 1)\) is a factor
 c) \(x^6 + x^3 - 3x + 17\) over \(\mathbb{C}\). reducible irreducible
 All poly's over \(\mathbb{C}\) factor into linear factors.
 d) \(x^3 + x + 17\) over \(\mathbb{Q}\). reducible irreducible
 By rational root test, \(\pm 1, \pm 17\) are the only possible roots, but none of them works. Thus there
 is no linear factor.
 e) \(x^3 + x + 17\) over \(\mathbb{R}\). reducible irreducible
 Only linear poly's and quadratics with neg. discriminants are irreducible over \(\mathbb{R}\).

(8) 2. State and prove the factor theorem for polynomials over a field \(F\). (Use the division algorithm for your proof. Do not assume the remainder theorem.)

Let \(f(x) \in F[x], a \in F\). Then \(a\) is a zero of \(f(x)\) if and only if \((x-a)\) is a factor of \(f(x)\).

Proof. By the division algorithm \(f(x) = q(x)(x-a) + r(x)\) for some polynomials \(q(x), r(x)\) with \(\deg(r(x)) < 1\) or \(r(x) = 0\).
In either case \(r(x)\) is a constant polynomial, say \(r(x) = r \in F\).
Thus \(f(x) = q(x)(x-a) + r\).

Then \(a\) is a zero of \(f(x)\):

\[\Leftrightarrow f(a) = 0\]
\[\Leftrightarrow q(a)(a-a) + r = 0\]
\[\Leftrightarrow r = 0\]
\[\Leftrightarrow f(x) = q(x)(x-a), \text{ for some } q(x) \in F[x]\]
\[\Leftrightarrow (x-a) \text{ is a factor of } f(x)\].
3) a) Define what it means for a set \(G \) with binary operation \(* \) to be a group.

\[G, * \] is a group if

i) \(G \) is closed under \(* \), that is, if \(x, y \in G \), then \(x*y \in G \)

ii) \(* \) is associative, that is, \((x*y)*z = x*(y*z) \) \(\forall x, y, z \in G \)

iii) \(G \) has an identity \(e \) satisfying \(x*e = e*x = x \), \(\forall x \in G \)

iv) For any \(x \in G \), there is an inverse \(x' \) in \(G \) such that \(x*x' = e \), \(x'*x = e \)

b) Give an example of a nonabelian group.

\[S_n, (\text{for any } n \geq 3) \], \(D_n, (\text{for any } n \geq 3) \)

c) Give examples of two different groups of order 8.

\[\{ \mathbb{Z}_8, + \}, D_4 \]

4. Determine whether the following sets are groups under the given operation. If not, state one property that fails.

a) \(\{ \pm 1, \pm i \} \) under multiplication. (Here, \(i = \sqrt{-1} \).) \[\text{Group} \]

b) The set of multiples of 3, \(\{ 3x : x \in \mathbb{Z} \} \), under addition. \[\text{Group} \]

c) The set of units modulo 9, \(U_9 \), under addition. \[U_9 = \{1, 2, 4, 5, 7, 8\} \]

\[\text{Not closed under +; } 1 + 2 = 3 \notin U_9 \]

\[\text{Not a group} \]

d) The set of nonzero complex numbers under multiplication. \[\text{Group} \]

5) Let \(U_7 \) be the multiplicative group of units \((\text{mod } 7) \).

a) What is the order of \(U_7 \)? \[|U_7| = \phi(7) = 6 \]

b) Find an element in \(U_7 \) of order 3.

\[2^3 \equiv 1 \pmod{7} \]

\[\text{But } 2^4 \equiv 2 \pmod{7} \]

\[\text{Thus the order of } 2 \text{ is 3.} \]

c) Find a subgroup of \(U_7 \) of order 3.

\[< 2 > = \{ 1, 2, 4 \} \]

\[\{ \mathbb{Z}_8, + \}, D_4 \]
(9) 6) Let \(\mathbb{Z}_8 \) be the additive group of residue classes \(\text{mod } 8 \).
 a) Is \(\mathbb{Z}_8 \) a cyclic group? If so, give a generator for the group.
 \[\text{Yes, } \mathbb{Z}_8 = \langle [1] \rangle \]

b) What is the order of 2?
 \[2 + 2 + 2 = 4, \quad 2 + 2 + 2 + 2 = 8 = 0 \]
 Thus the order of 2 is 4.

c) What is the inverse of 3 with respect to the group operation.
 \[-3 = 5 \quad \text{since} \quad 5 + 3 = 0 \quad \text{in } \mathbb{Z}_8. \]

(9) 7) Let \(\alpha \in S_7 \) be the permutation
 \[\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 5 & 4 & 7 & 2 \end{pmatrix} \]

a) Express \(\alpha \) as a product of disjoint cycles.
 \[\alpha = (1, 3)(2, 6, 7)(4, 5) \]

b) Find \(\alpha^{-1} \), expressed in both standard form and as a product of cycles. (Standard form means the way \(\alpha \) is defined above.)
 \[\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 1 & 5 & 4 & 2 & 6 \end{pmatrix} \]
 \[\alpha^{-1} = (1, 3)(2, 7, 6)(4, 5) \]

c) Find \(\alpha^2 \). (Expressed in standard form or cycle form.)
 1) Standard Form: \(\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 3 & 4 & 5 & 2 & 6 \end{pmatrix} \)
 \[\alpha^2 = (1, 3)(2, 6, 7)(4, 5)(1, 3)(2, 6, 7)(4, 5) = (1)(2, 7, 6)(4)(5) = (2, 7, 6) \]
 2) A second way:
 \[\alpha^2 = (1, 3)(2, 6, 7)(4, 5)^2 = (2, 6, 7)^2 = (2, 7, 6) \]
(8) b) Let \(\sigma, \tau \) be symmetries of a square corresponding to clockwise rotation of 90 degrees and a flip around the vertical axis resp., \(\sigma = (1,2,3,4), \tau = (1,2)(3,4) \).

\[\begin{align*}
\sigma \tau &= (1,2,3,4)(1,2)(3,4) = (1,3)(2,4) = (1,4) \\
\tau \sigma &= (1,2)(3,4)(1,2,3,4) = (1)(2,4)(3) = (2,4)
\end{align*} \]

a) Find \(\sigma \tau \) and \(\tau \sigma \) expressed in cycle notation. (Recall, \(\sigma \tau \) means apply \(\tau \) first, then \(\sigma \).)

\[\begin{align*}
\sigma \tau &= (1,3) \text{, a flip about } D_2 \\
\tau \sigma &= (2,4) \text{, a flip about } D_1
\end{align*} \]

b) State in words the symmetries of the square corresponding to \(\sigma \tau \) and \(\tau \sigma \).

(4) 8) a) State the Fundamental Theorem of Algebra. Let \(f(x) \) be a nonconstant polynomial with complex coefficients. Then \(f(x) \) has a zero in \(\mathbb{C} \).

(8) b) State and prove the linear factorization theorem for polynomials over \(\mathbb{C} \). (Use induction.)

If \(f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{C}[x] \), then there exist complex numbers \(r_1, r_2, \ldots, r_n \) such that \(f(x) = a_n (x-r_1)(x-r_2) \cdots (x-r_n) \).

Proof. By induction on \(n \). When \(n = 1 \), \(f(x) = a_1 x + a_0 \) with \(a_0 \neq 0 \). Then \(f(x) = a_1 (x + \frac{a_0}{a_1}) = a_1 (x - r_1) \) with \(r_1 = -\frac{a_0}{a_1} \in \mathbb{C} \).

Suppose the statement is true for \(n \) and let \(f(x) \) be of degree \(n+1 \). By Fund. Thm. of Algebra \(f(x) \) has a zero \(r \in \mathbb{C} \) and so by the factor theorem \(f(x) = (x-r) g(x) \) for some polynomial \(g(x) \) over \(\mathbb{C} \). Now \(g(x) \) has degree \(n \) and has the same leading coeff. as \(f(x) \), call it \(a_n \). Thus, by induction assumption there exist complex numbers \(r_1, \ldots, r_n \) such that \(g(x) = a_n (x-r_1) \cdots (x-r_n) \). Then \(f(x) = a_n (x-r) (x-r_1) \cdots (x-r_n) \) Q.E.D.