ALGEBRAIC SYSTEMS
Exam 1
September 25, 2006

The point value of each problem is given in the margin. Total = 80 points.

(8) 1. State and prove the cancellation law for addition of integers.
 If \(a + x = a + y \) then \(x = y \).

 Proof.
 \[
 a + x = a + y \\
 -a + (a + x) = -a + (a + y) \\
 \text{additive inverses exist} \\
 (-a + a) + x = (-a + a) + y \\
 \text{associative law} \\
 0 + x = 0 + y \\
 \text{additive inverse property} \\
 x = y \\
 \text{zero is additive identity}
 \]

(10) 2. Use the Euclidean Algorithm to find the greatest common divisor \(d \) of 65 and 91 and find integers \(x, y \) such that \(65x + 91y = d \).

\[
gcd(65, 91) = gcd(65, 26) = gcd(13, 26) = gcd(13, 0) = 13
\]

\[
\begin{array}{cccc}
65 & 91 & 26 & 13 \\
26 & 91 & 65 & 13 \\
26 & 26 & 13 & 0 \\
0 & 26 & 13 & -1 \\
26 & 3 & 13 & -2 \\
\end{array}
\]

\[
65 \cdot 3 + 91 \cdot (-2) = 195 - 182 = 13 \quad \text{check}
\]

\[
x = 3, \quad y = -2
\]
(10) 3. Prove by induction that for any positive integer \(n \),
\[1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2 \]

When \(n = 1 \), \(1 = 1^2 \), so the statement is true.
Assume the statement is true for \(n \), \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \).
Then
\[1 + 3 + 5 + \cdots + (2n - 1) + (2n + 1) = n^2 + (2n + 1) = (n + 1)^2. \]
Thus the statement is true for \(n + 1 \). \(\text{QED} \).

(8) 4. Use properties of congruences to compute the following numbers modulo 7. (You can check your work on a calculator, but show how the properties are used here.)

(a) \(707 \cdot 145 - 1403 \equiv 0 \cdot 145 - 3 \equiv -3 \equiv 4 \pmod{7} \)
\[707 \equiv 0 \pmod{7} \]
\[1403 \equiv 3 \pmod{7} \]

(b) \(78^2 + 72^5 \equiv 1^2 + 2^5 \equiv 1 + 32 \equiv 33 \equiv 5 \pmod{7} \)
\[78 \equiv 1 \pmod{7} \]
\[72 \equiv 2 \pmod{7} \]

Check:
\[78 + 72 = 150 \equiv 3 \]
\[150 + 72 = 222 \equiv 5 \]

(5) 5. Find \(2^{123} \pmod{15} \).

First note that \(2^4 = 16 \equiv 1 \pmod{15} \)
\[2^{123} = (2^4)^{30} \cdot 2^3 \equiv 1^{30} \cdot 2^3 \equiv 8 \pmod{15} \]

Every positive integer \(n > 1 \) can be expressed uniquely as a product of primes.

7. Prove that there are infinitely many primes.

Proof by contradiction: Suppose there are only finitely many primes, say \(p_1, p_2, \ldots, p_k \). Let \(N = p_1 p_2 \cdots p_k + 1 \). Then \(n \) has a prime divisor \(p_i \) for some \(1 \leq i \leq k \) (by FTA). Since \(p_i | n \) and \(p_i | p_1 p_2 \cdots p_k \) it follows that \(p_i | (n - p_1 p_2 \cdots p_k) \), that is, \(p_i | 1 \), a contradiction. Thus there are \(\infty \) many primes.

8. Solve the following congruences.

a) \(7x \equiv 5 \pmod{13} \)
 By inspection \(7 \cdot 2 = 14 \equiv 1 \pmod{13} \)
 \[2 \cdot 7x \equiv 2 \cdot 5 \pmod{13} \]
 \[x \equiv 10 \pmod{13} \]
 \[\{10\}_{13} \]
 Either answer is okay.

b) \(2x \equiv 4 \pmod{12} \)
 \[\gcd(2, 12) = 2 | 4 \]
 \[2x = 4 + 12y \]
 \[x = 2 + 6y \]
 \[x \equiv 2 \pmod{6} \]
 \[\{2\}_6 \text{ or } \{2\}_{12} \text{ or } \{8\}_{12} \]
 All 3 answers are correct.
9. Prove Euclid’s lemma: If \(a, b, c \) are integers with \(a \mid bc \) and \(\gcd(a,b) = 1 \), then \(a \mid c \).

Since \(\gcd(a,b) = 1 \), there exist integers \(x, y \) with \(ax + by = 1 \).

Then \(c = c(ax + by) = c(ax) + (bc)y \),
\[\Rightarrow \quad c = a(cx) + (bc)y. \]

Since \(a \mid a \) and \(a \mid bc \) it follows that \(a \mid a(cx) + (bc)y \), that is, \(a \mid c \).

10. a) Find the continued fraction expansion of \(\sqrt{2} = 1.414213562\ldots \). (You can use your calculator if you like. Go down at least four levels and discover a pattern.)

\[\sqrt{2} = 1 + \frac{1}{\sqrt{2} - 1} = 1 + \frac{1}{1 + \frac{1}{\sqrt{2} - 1}} = 1 + \frac{1}{2 + \frac{1}{\sqrt{2} - 1}} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\sqrt{2} - 1}}} \]

\[= 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\sqrt{2} - 1}}}} \]

Note \(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} = \frac{2 + \sqrt{2}}{2 - \sqrt{2}} = \frac{2 + \sqrt{2}}{2 - \sqrt{2}} \times \frac{2 + \sqrt{2}}{2 + \sqrt{2}} = \frac{2 + 2\sqrt{2} + 2}{4 - 2} = \frac{4 + 2\sqrt{2}}{2} = 2 + \sqrt{2} \)

= 2 + (\sqrt{2} - 1)

\[\Rightarrow \text{pattern repeats} \]

b) Find the first five “best” rational approximations of \(\sqrt{2} \). (coming from the continued fraction expansion). Start with \(\frac{1}{1} \). Express your answers as reduced fractions.

\[
\begin{array}{cccccc}
0 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 3 & 7 & 17 & 41 & 99 \\
& & 1 & 2 & 5 & 12 & 29 & 70 \\
\end{array}
\]

\[\frac{1}{1} = 1 \]
\[\frac{3}{2} = 1.5 \]
\[\frac{7}{5} = 1.4 \]
\[\frac{17}{12} = 1.416 \]
\[\frac{41}{29} = 1.4137... \]

c) Explain why in Europe a standard note pad is of size 297 mm by 210 mm. (A piece of paper of size \(x \) by \(y \) with \(x > y \) is designed so that if it is folded in two lengthwise the resulting rectangle has the same proportions as the original rectangle, that is, \(\frac{x}{y} = \frac{y}{x/2} \).)

\[
\left(\frac{x}{y} \right)^2 = 2 \quad \Rightarrow \quad \frac{x}{y} = \sqrt{2}.
\]
Thus \(x, y \) are chosen so that \(\frac{x}{y} = \sqrt{2} \). This is a best rational approximation of \(\sqrt{2} \). Now \(\frac{297}{210} = \frac{99}{70} \) which is the sixth number in the list of best approximations (see part (b)).