INTRODUCTION TO NUMBER THEORY
Exam 2
March 27, 2009

The point value of each problem is given in the margin. Total=80 points. No calculators.

The point value of each problem is given in the margin. Standard notation is used:
\(\tau(n) = \) the number of positive divisors of \(n \).
\(\sigma(n) = \) the sum of the positive divisors on \(n \).
\(\phi(n) = \) the number of integers relatively prime to \(n \) from 1 to \(n \).
\(\mu(n) = 1 \) if \(n = 1 \), \(0 \) if \(p^2 | n \), and \((-1)^k \) if \(n = p_1 \ldots p_k \).

\(\text{(28)} \) 1. Short Answer:
 a) Give an example of a prime number in \(\mathbb{N} \) that factors (nontrivially) in the Gaussian integers \(\mathbb{Z}[i] \) and give the factorization.

 b) Give an example of a prime number in \(\mathbb{N} \) that remains prime in the Gaussian integers \(\mathbb{Z}[i] \) and explain why it can’t be factored.

 c) Give a prime divisor of \(2^{44} + 1 \) bigger than 10.

 d) It is known that \(p = 2^{31} - 1 \) is a prime. Give a perfect number having \(p \) as a factor.

 e) A number less than 400 (such as 397) is tested for primality by dividing by small primes 2,3,5,7,... What is the largest prime divisor that must be tested?

 f) Suppose \(f \) is a multiplicative function with \(f(2) = 2 \), \(f(3) = 3 \), \(f(4) = 5 \). Find \(f(8) \) and \(f(12) \) or state that it can’t be determined.

 g) Evaluate \(\sum_{d|76542} \mu(d) = \) and \(\sum_{d|76542} \phi(d) = \)
(16) 2. Find the following.
 (a) The prime power factorization of 360.

 (b) $\tau(360) =$

 (c) $\sigma(360) =$

 (d) $\phi(360) =$

(9) 3. Prove one of the following.
 (a) There are infinitely many primes.
 (b) There are arbitrarily large gaps between consecutive primes.
4. A natural number n is called 3-perfect if $\sigma(n) = 3n$. Find all 3-perfect numbers of the form $n = 15 \cdot 2^k$, where k is a positive integer.

5. Let $f(n)$ be a multiplicative function and $F(n)$ be defined by

$$F(n) = \sum_{d|n} f(d)$$

for any natural number n, where the sum is over all positive divisors of n. Prove that $F(n)$ is multiplicative.

6. Let $F(n) = \sum_{d|n} \mu(d)\sigma(d)$.

 (a) Explain why $F(n)$ is a multiplicative function.

 (b) Find $F(p^k)$ for any prime power p^k.

 (c) Find $F(3000) =$