INTRODUCTION TO NUMBER THEORY
Exam 2
March 16, 2007

The point value of each problem is given in the margin. Total = 80 points.

The point value of each problem is given in the margin. Standard notation is used: \((a, b) = \text{GCD}, [a, b] = \text{LCM}, p^k \parallel n \text{ if } p^k | n \text{ but } p^{k+1} \nmid n.\)
\(\tau(n) = \text{the number of positive divisors of } n.\)
\(\sigma(n) = \text{the sum of the positive divisors on } n.\)
\(\phi(n) = \text{the number of integers relatively prime to } n \text{ from 1 to } n.\)
\(\mu(n) = 1 \text{ if } n = 1, 0 \text{ if } p^2 | n, \text{ and } (-1)^k \text{ if } n = p_1 \ldots p_k.\)

(9) 1. Let \(a = 2^9 \cdot 3^5 \cdot 7^2, \) \(b = 2^5 \cdot 3^5 \cdot 5^7.\) Find the following.
 (i) \((a, b) = \) The prime factorization will do!
 (ii) \([a, b] = \) Same comment.
 (iii) The value \(e\) such that \(5^e \parallel (a + b)\)

(10) 2. Use the Sieve of Eratosthenes to find all the primes between 200 and 220. (Cross out the nonprimes.) What is the largest prime divisor that must be sifted out?

<table>
<thead>
<tr>
<th></th>
<th>200</th>
<th>201</th>
<th>202</th>
<th>203</th>
<th>204</th>
<th>205</th>
<th>206</th>
<th>207</th>
<th>208</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
</tr>
</tbody>
</table>

(9) 3. (a) Suppose \(a, k\) are positive integers such that \(a^k - 1\) is a prime. What can be said about \(k?\) (explain)

(b) Find two distinct prime divisors of \(2^{25} + 1.\)

(c) Give a prime divisor of \(2^{25} - 1.\)
4. Find the following.
 (a) The prime power factorization of 2500.

 (b) \(\tau(2500) = \)

 (c) \(\sigma(2500) = \)

 (d) \(\phi(2500) = \)

5. Suppose that \(f \) is a multiplicative function defined on \(\mathbb{N} \) such that \(f(2) = 1, \ f(3) = 5, \ f(5) = 2, \ f(12) = 15 \). For each of the following find the value or state that it cannot be determined based on the given information.
 (a) \(f(30) = \)

 (b) \(f(4) = \)

 (c) \(f(50) = \)
6. Prove one of the following.
 (a) If \(n = 2^k(2^{k+1} - 1) \) and \(2^{k+1} - 1 \) is a prime then \(n \) is perfect.
 (b) \(n \) is divisible by 9 if and only if the sum of the digits of \(n \) is divisible by 9.

7. Prove one of the following.
 (a) For any nonzero positive integers \(a, b \), \(a, b = ab\).
 (b) If \(f \) is multiplicative and \(F(n) = \sum_{d|n} f(d) \) then \(F \) is multiplicative.
8. Let $F(n) = \sum_{d|n} \mu(d)\tau(d)$.

 a) Find a formula for $F(p^e)$ where p^e is any prime power.

b) Find a formula for $F(n)$ if $n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$.