1. a) Explain why $\gcd(0,0)$ is not defined.

b) What discreteness property of the integers is needed to prove that $\gcd(a,b)$ exists if a,b are not both zero.

c) (Fill in the blank) In the Fast Euclidean algorithm one needs the following version of the division algorithm: Given integers a,b with $b \neq 0$, there exist integers q,r such that $a = bq + r$ with

\[\text{.}\]

d) State the key lemma needed for proving the uniqueness of factorization of integers. (It involves a prime p.)

e) What method of proof is used for proving the existence of factorization of natural numbers.

2. Use the Euclidean Algorithm to find the greatest common divisor of 28 and 266.
(12) 3. a) Find the general solution of the linear equation $23x + 14y = 200$, in integers x, y.
 b) Then find all solutions with x and y both positive.

(15) 4. Use properties of congruences to compute the least residue of the following numbers (mod 7). (Avoid long multiplication in Z.)
 (a) $4903 \cdot 69 + 72$

 (b) $78^2 + 72^5$

 (c) 2^{1000}
5. Prove the following theorem. If \(a, b, c, d \) are integers such that
\[a \equiv c \pmod{m} \quad \text{and} \quad b \equiv d \pmod{m} \]
then \(ab \equiv cd \pmod{m} \).

6. True, False. Circle T or F. True means that the statement is true for all choices of integers
\(a, b, c, d \). \((a, b) = \text{GCD} \). \([a, b] = \text{LCM}\).

- T F a) If \(a | (b + c) \) then \(a | b \) and \(a | c \).
- T F b) If \(a | b \) and \(a | c \) then \(a | (2b - c) \).
- T F c) If \(a | bc \) then either \(a | b \) or \(a | c \).
- T F d) If \(d | a \) and \(d | b \) then \(d | [a, b] \).
- T F e) For any integers \(a, b, c \), \((a, b + ca) = (a, b)\)
- T F f) If \(m | (a - 2b) \) then \(a \equiv 2b \pmod{m} \).
- T F g) If \(p, q \) are distinct primes then there exist integers \(x, y \) such that \(px + qy = 10^{10} \).
- T F h) If \(p \) is an odd prime then there exist integers \(x, y \) such that \(px + p^2y = 4 \).
7. Prove by induction that \(4^n \equiv 1 + 3n \pmod{9} \), for any positive integer \(n \).

8. Prove that if \(a \mid bc \) and \(\gcd(a, b) = 1 \), then \(a \mid c \).