The point value of each problem is given in the margin.

(9) 1. Use tests (not long division) to determine whether 50301132 is divisible by the following numbers. (Show how the test works.)
 a) $4 \mid 32$, so $4 \mid 50301132$.
 b) $6 \mid 3 + 1 + 0 + 1 + 3 + 2 = 15, 3 \mid 15$, so 3 is a divisor. 2 is a divisor since 50301132 is even. Thus $6 \mid 50301132$.
 c) $11 \mid 5 - 0 + 3 - 0 + 1 - 1 + 3 - 2 = 9, 11 \nmid 9$, so $11 \nmid 50301132$.

(8) 2. Given that $a = 2^3 \cdot 3^1 \cdot 7^2$, $b = 3^3 \cdot 5^2$ find
 a) GCF $(a,b) = 3^1 = 3$
 b) LCM $(a,b) = 2^3 \cdot 3^3 \cdot 5^2 \cdot 7^2$
 (You may express your final answer as a product of prime powers.)

(6) 3. Use the Euclidean Algorithm to find GCF(483,529).
 \[
 \begin{align*}
 &= \text{GCF}(483, 46) \\
 &= \text{GCF}(23, 46) \\
 &= \text{GCF}(23, 0) \\
 &= 23
 \end{align*}
 \]

(7) 4. Calculate $3.3 \times .06$ using the standard algorithm for multiplication and explain how and why the rule for moving the decimal point works.
 \[
 \begin{align*}
 \text{3.3} \times .06 &= \text{33} \times .6 \\
 &= \frac{33}{10} \times \frac{6}{100} \\
 &= \frac{33 \times 6}{1000} \\
 &= \frac{198}{1000} \\
 &= .198
 \end{align*}
 \]
5. State the Fundamental Theorem of Arithmetic.

Any composite number can be expressed uniquely as a product of primes (except for the order of the primes).

6. State the rule for determining whether a fraction has a terminating decimal expansion and then circle all fractions in the list below that have terminating decimal expansions.

A reduced fraction \(\frac{a}{b} \) has a terminating decimal expansion if the only prime factors of \(b \) are 2 and/or 5.

\[
\begin{align*}
\frac{1}{5} & \quad \frac{1}{25} & \quad \frac{1}{3} & \quad \frac{1}{15} & \quad \frac{1}{7} & \quad \frac{1}{17} & \quad \frac{1}{35} & \quad \frac{2}{5} & \quad \frac{2}{5} \\
2 \cdot 3 & \quad 5 & \quad 11 & \quad 5 \cdot 3 & \quad 2 & \quad 17 & \quad 5 & \quad 2 & \quad 2
\end{align*}
\]

7. Make up a word problem for modelling \(8 \div \frac{2}{3} \) and then solve your problem.

How many pieces of length \(\frac{2}{3} \) inch can be cut from a string of length 8 inches?

\[
\frac{8}{\frac{2}{3}} = 8 \cdot \frac{3}{2} = 12
\]

8. a) Write in expanded form \(80050.0103 = 8 \cdot 10^4 + 5 \cdot 10 + 1 \cdot 10^{-2} + 3 \cdot 10^{-4} \)

b) Express as a decimal \(4 \cdot 10^3 + 3 \cdot 10^{-2} = 4000.03 \)

c) Express in words 500.021 (but not in the manner "500 point 0,2,1").

Five hundred and twenty-one thousandths

9. a) Convert 2.72 to a mixed number in simplified form.

\[
2 \frac{72}{100} = 2 \frac{36}{50} = 2 \frac{18}{25}
\]

b) Convert 2.1\(\overline{5} \) = 2.151515... to an improper fraction in simplified form.

\[
x = \frac{213}{99} = \frac{71}{33}
\]

Subtract \(99x = 213 \)
(6) 10. Determine whether the following calculations are correct or not. If wrong, give the correct answer.
(a) \(\left(\frac{2}{3} \right) \cdot 3 = \frac{6}{9} \) \(\frac{2}{3} \cdot 3 = \frac{6}{3} \cdot 3 = \frac{18}{3} = \frac{6}{3} = \frac{2}{1} \) Correct
(b) \(3 \left(\frac{1}{5} \right) = \frac{3}{15} \) Wrong. \(3 \left(\frac{1}{5} \right) = \frac{3}{5} \)
(c) \(1^{-1} + 2^{-1} = 3^{-1} \) Wrong. \(1^{-1} + 2^{-1} = \frac{1}{1} + \frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2} \) not \(\frac{1}{3} \)

(9) 11. Give ballpark estimates of the following. (Do not calculate exact values.)
(a) \(\frac{600}{391} \approx \frac{600}{400} = 200 \)
(b) 4.97 percent of 998 \(\approx \frac{5}{100} \) \(\cdot \) 1000 = 50
(c) \(\frac{10.5}{20} + \frac{3.3}{10} + \frac{6}{12.1} \approx 1 + 3 + 0 = 4 \)

(6) 12. Use a rectangle area model to illustrate why \(\frac{3}{7} \times \frac{2}{3} = \frac{6}{21} \)

(5) 13. A recipe calls for 2 cups of flour and 1.5 cups of milk. If you only have 1 \(\frac{1}{2} \) cups of flour, how much milk should you add? (Set up a proportion and solve it.)

\[
\frac{Milk}{Flour} = \frac{\frac{1.5}{2}}{\frac{1.5}{2}} \Rightarrow x = \frac{1.5 \cdot \frac{1.5}{2}}{2} = \frac{2.25}{2} = \frac{9}{4} \cdot \frac{1}{2} = \frac{9}{8} \]
\[x = 1 \frac{1}{8} \text{ cups of milk.}\]

(8) 14. (a) The price of gas rose from $1.50 to $2.00 per gallon. By what percent had it gone up?

\[\frac{\$0.50}{\$1.50} = \frac{1}{3} = 0.3333 \approx 33.3\%\]

(b) A $50000 house went up in value 20% the first year and down in value 20% the second year. What is the value now?

\[\text{After 1 year: } 50000 + 0.2 \times 50000 = 50000 + 10000 = 60000\]
\[\text{After 2 years: } 60000 - 0.2 \times 60000 = 60000 - 12000 = 48000\]