SOLUTIONS

Rec. Instr., Time

Calculator 75-83

COLLEGE ALGEBRA, FINAL EXAM
December 18, 2002

Show all work for full credit. You may use a calculator, but do not use books or notes. The point-value of each problem is given in the left-hand margin. Read the directions carefully. You have two hours.

(6) 1. Circle all of the numbers that are rational numbers. All numbers that can be represented as a ratio of two integers. As decimals, they either have a repeating pattern or terminate.

\[\frac{17}{1} \quad \frac{22}{10} \quad \frac{\sqrt{2}}{1} \quad 7.13 \rightarrow 7.131313... \]

(7) 2. Simplify. No negative exponents should appear in your final answer.

\[\left(\frac{x^{-2}y^2}{y^3} \right)^{-1} = \left(\frac{1}{x^2y^{3-2}} \right)^{-1} = \left(\frac{1}{x^2y} \right)^{-1} = x^2y \]

(4) 3. a) The value of a $50,000 house went down by 20% the first year and up by 20% the second year. What was its value at the end of the second year?

After 1 year: $50,000 \times (0.8) = $40,000

After 2 years: $40,000 + (0.2) \times $40,000 = $48,000

(4) 3. b) The average SAT score increased from 500 to 532. By what percent had the average score gone up?

\[\frac{22}{500} = \frac{44}{1000} = .044 = 4.4\% \]

(4) 3. c) The price of a television has been discounted 10%. The sale price is $540. What was the original price?

\[x = \text{original price} \]

\[x - (0.1)x = 540 \Rightarrow 0.9x = 540 \Rightarrow x = \frac{540}{0.9} = 600 \]

(6) 4. Expand and express your final answer as a polynomial in standard form.

\[(2x - 1)(3x^2 - x + 2) = 2x(3x^2 - x + 2) - (3x^2 - x + 2) \]

\[= 6x^3 - 2x^2 + 4x - 3x^2 + x - 2 = 6x^3 - 5x^2 + 5x - 2 \]
5. Factor completely the following polynomials.

(4) a) \(2x^3 - x^2 - 8x + 4 = x^2(2x-1) - 4(x-2)(x-1) = (ax-1)(x^2-4)\)
 \[= (ax-1)/(x-2)(x+2)\]

(4) b) \(x^2(2x-1) + x^2(2x-1)^2 = x^2(ax-1) \left[x + (ax-1) \right] = x^2(ax-1)/(3x-1)\)

(7) 6. Perform the indicated operations and simplify.
\[
\frac{1-x^2}{x} + \frac{x-1}{x} = \frac{1-x^2}{x} \cdot \frac{x}{x-1} = \frac{(1-x)}{(x+1)(x-1)}
\]
\[= \frac{(x-1)(1+x)}{(x-1)(x+1)} = -(1+x) \text{ or } -1-x
\]

(7) 7. Solve for \(x\).
\[
\left[\frac{1}{x+2} - \frac{2}{x} = 1 - \frac{x}{x} \right] \cdot x(x+2)
\]
\[
x - 2(x+2) = (x+2) \Rightarrow -6 = 2x
\]
\[
x - 2x - 4 = x + 2
\]
\[-4 = 2 = x + 2
\]
\[-4 - 2 = x + x
\]
\[x = \frac{-6}{2} = -3
\]
\[\text{check: } \frac{1}{-1} + \frac{2}{3} = -\frac{1}{3} \text{ OK}
\]

(7) 8. Solve for \(a\) in terms of \(b\).
\[b(a+b) = a\]
\[ba + b^2 = a\]
\[a - ba = b^2\]
\[a(1 - b) = b^2\]
\[\Rightarrow a = \frac{b^2}{1 - b}\]

(8) 9. How many gallons of a 20% salt solution must be added to 20 gallons of a 60% solution to make a 40% solution? (Identify any symbols you introduce.)

\[
\begin{array}{c}
\text{gal. } x \times 80\% \\
\text{? } \times 60\% \\
\text{? } \times 40\%
\end{array}
\]
\[
\begin{align*}
.2x + (60\%)\times 20 &= .4(x+20) \\
.2x + 12 &= .4x + 8 \\
.4 &= .2x \\
x &= \frac{.4}{.2} = 20 \text{ gal.}
\end{align*}
\]
(8) 10. Solve the inequality and sketch the solution set on the number line provided.
\[
\frac{x}{x+2} \leq 0
\]
Critical pts: \(x = 0, -2\)

<table>
<thead>
<tr>
<th>Test</th>
<th>(\frac{x}{x+2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{x}{x+2})</td>
</tr>
<tr>
<td>-1</td>
<td>(\frac{x}{x+2})</td>
</tr>
<tr>
<td>-3</td>
<td>(\frac{x}{x+2})</td>
</tr>
</tbody>
</table>

Excluded because \(x = -2\)
Include because \(x = 0\)

\(-2 \leq x \leq 0\)

(8) 11. Find an equation of the line perpendicular to the line \(y = -\frac{1}{2}x\) and passing through the point \((2,0)\). Put your final answer in the form \(y = mx + b\).

Given line slope: \(m = -\frac{1}{2}\)

Perpendicular slope: \(m = \frac{3}{1} = 3\)

Pt-slope form:

\[y - y_1 = m (x - x_1)\]
\[y - 0 = 3 (x - 2)\]
\[y = 3x - 6\]

(8) 12. Perform the given operations and express your answers as complex numbers in standard form \(a + bi\) with \(a, b\) real numbers. \((i = \sqrt{-1}\), the imaginary unit.\)

a) \((2 - i)(1 + 2i) = 2 - i + 4i - 2i^2 = 2 + 3i + 2 = 4 + 3i\)

b) \(\frac{5}{2 - i} \cdot \frac{2 + i}{2 + i} = \frac{5(2 + i)}{4 - i^2} = \frac{5(2 + i)}{4 - (-1)} = \frac{5(2 + i)}{5} = 2 + i\)

(8) 13. Rewrite the equation of the given circle in standard form and identify its center point and radius.

\[x^2 + y^2 + 8x - 2y = 0\]

\[x^2 + 8x + \boxed{16} + y^2 - 2y + \boxed{1} = 16 + 1\]

\[(x + 4)^2 + (y - 1)^2 = 17 = (\sqrt{17})^2\]

Center point = \((-4,1)\)

Radius = \(\sqrt{17}\)
(8) 14. Sketch the graph of the function \(f(x) = \begin{cases} |x|, & x \leq 1 \\ x - 1, & x > 1 \end{cases} \).

1) \(y = |x| \) for \(x \leq 1 \) (V-shaped graph)

2) \(y = x - 1 \) for \(x > 1 \), line with slope 1.

Open \(0 \), because \(x > 1 \) for \(y = x - 1 \).

(8) 15. Solve the following equation using complex numbers if need be. Simplify your final answer(s).

\[x^2 + 2x + 5 = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 5}}{2} \]

\[= \frac{-2 \pm \sqrt{-16}}{2} \]

\[= \frac{-2 \pm 4i}{2} \]

\[= -1 \pm 2i \]

(6) 16. Starting with the graph of \(y = \sqrt{x} \), indicate how to obtain the graphs of the following by filling in the blanks. (You might find it helpful to sketch the graphs.)

a) \(y = \sqrt{x} - 7 \).

Shift \(7 \) units right (left, right, up or down?).

b) \(y = \sqrt{-x} + 2 \).

Reflection in the \(y \) axis, followed by

Shift \(2 \) units up (left, right, up or down?).

(8) 17. Sketch the graph of \(f(x) = \frac{4x-4}{3+x} \) and identify and graph the following:

(a) Vertical Asymptote(s): \(x = -3 \)

(b) Horizontal Asymptote(s): \(y = \frac{4}{3} \)

(c) \(x \)-intercept(s): \(2x - 4 = 0 \), \(x = 2 \)

(d) \(y \)-intercept(s): \(x=0 \), \(y = \frac{-4}{3} \)

\[\text{On TI-83} \]

\[y = (4x-4)/(3+x) \]

\[\text{Use TI-83 TABLE} \]

\[\begin{array}{c|c}
\hline
x & y \\
\hline
-4 & 1.09 \\
-6 & 0.33 \\
-2 & -8 \\
4 & 0.57 \\
8 & 1.09 \\
\hline
\end{array} \]
18. Let \(f(x) = x^3 + 6x^2 - 9x - 14 \).

a) According to the rational zero test, what are the possible rational zeros of \(f(x) \)?

\[p = \text{divisor of } 14, q = \text{factor of } 1 = 1 \]

\[\pm \frac{p}{q} = \pm \frac{1}{1}, \pm 6, \pm 7, \pm 14 \]

\[x = -1, 2, 7 \]

b) Find the real zeros of \(f(x) \) either by using your calculator or by testing the candidates in the preceding list. Given on standard scale. Use Trace or [2: zero] to verify that \(f(x) \) has zeros at \(x = -7, 1, 2 \).

\[
\begin{align*}
\text{f}(x) &= (x+7)(x+1)(x-2) \\
\end{align*}
\]

19. Write the following as the logarithm of a single quantity.

\[
3 \ln(y) + 2 \ln(x) - \ln(z) = \ln(y^3) + \ln(x^2) - \ln(z) = \ln \left(\frac{y^3 \cdot x^2}{z} \right)
\]

20. Sketch the graph of the function \(f(x) = \log_2(x-2) \) on the chart below and indicate the following:

- Domain of \(f(x) \): \(x - 2 > 0 \), \(x > 2 \)
- Vertical asymptote: \(x = 2 \)
- \(x \)-intercept: \(x - 2 = 1 \), \(x = 3 \)
- Is there a horizontal asymptote? \(\text{NO} \)

21. Evaluate the following logarithms. Give the exact values in parts (a), (b) and an approximation to two decimal places in (d).

(a) \(\log_2 4 = \frac{2}{1} \)

(b) \(\ln(e^2) = 2 \cdot \ln(e) = 2 \)

(d) \(\log_7(14) = \frac{\ln(14)}{\ln(7)} = 1.36 \text{ year} \)

22. Find the time required for \$400 to double if it is invested at a rate of 4% compounded continuously. Round to two decimal places.

\[\begin{align*}
A &= Pe^{rt} \\
800 &= 400 e^{0.04t} \\
2 &= e^{0.04t} \\
\ln 2 &= 0.04t \\
&= \frac{\ln(2)}{0.04} = 17.33 \text{ years}
\end{align*} \]
(8) 23. Solve the following system of equations by hand. You must show your work to receive credit.

\[\begin{align*}
E_1 & \quad x - 3y + z = 7 \\
E_2 & \quad 2x - y - 2z = -14 \\
E_3 & \quad x - 3y = 0
\end{align*} \]

Back substitution:

\[\begin{align*}
4x - 5y & = 0 \\
4x - 12z & = 0
\end{align*} \]

Subtract \(7y \neq 0 \Rightarrow y = 0 \)

answer(s): \((x, y, z) = (0, 0, 7)\)

(8) 24. Solve the following system of equations by hand. You must show your work to receive credit.

\[\begin{align*}
y - x = 3 \\
y - x^2 = 1
\end{align*} \]

\[\begin{align*}
3 + x - x^2 & = 1 \\
\Rightarrow x^2 - x + 1 - 3 & = 0 \\
\Rightarrow x^2 - x - 2 & = 0 \\
\Rightarrow (x - 2)(x + 1) & = 0
\end{align*} \]

\[\begin{align*}
x = 2 \\
x = -1
\end{align*} \]

When \(x = 2 \), \(y = 3 + x = 5 \); when \(x = -1 \), \(y = 3 + x = 2 \)

answer(s): \((x, y) = (2, 5) \text{ or } (-1, 2)\)

(6) 25. Write the matrix below in reduced row-echelon form, RREF. (Either show your work by hand or indicate that you have used a calculator.)

\[\begin{bmatrix}
2 & 6 & 0 \\
4 & 8 & 1
\end{bmatrix} \xrightarrow{R_2 \rightarrow \frac{1}{4} R_2} \begin{bmatrix}
1 & 3 & 0 \\
1 & 2 & 1
\end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - R_2} \begin{bmatrix}
1 & 3 & 0 \\
0 & -1 & 1
\end{bmatrix} \xrightarrow{R_2 \rightarrow R_2 + 1} \begin{bmatrix}
1 & 0 & 3 \\
0 & 1 & 1
\end{bmatrix} \]

In RREF each row must have a leading 1, the leading 1’s progress to the right as you move down and in any column with a leading 1, all other entries are 0.

(8) 26. The following is the augmented matrix for a system of three equations in three unknowns \(x, y, \) and \(z \). Write down the system of equations and then solve the system for \(x, y, \) and \(z \).

\[\begin{bmatrix}
1 & 5 & -2 & | & 0 \\
0 & 1 & 3 & | & 2 \\
0 & 0 & 1 & | & 0
\end{bmatrix} \xrightarrow{x + 5y - 2z = 0} \begin{bmatrix}
1 & 3 & 0 & | & -2 \\
0 & 1 & 3 & | & 2 \\
0 & 0 & 1 & | & 0
\end{bmatrix} \xrightarrow{z = 0} \begin{bmatrix}
1 & 3 & 0 & | & 2 \\
0 & 1 & 3 & | & 2 \\
0 & 0 & 1 & | & 0
\end{bmatrix} \xrightarrow{\text{From 1st equation,}} \begin{bmatrix}
1 & 0 & 3 & | & 6 \\
0 & 1 & 3 & | & 2 \\
0 & 0 & 1 & | & 0
\end{bmatrix} \xrightarrow{\text{From 2nd equation,}} \begin{bmatrix}
1 & 0 & 0 & | & -10 \\
0 & 1 & 0 & | & 0 \\
0 & 0 & 1 & | & 0
\end{bmatrix} \]

answer(s): \((x, y, z) = (-10, 0, 0)\)