CALCULUS 2
EXAM II
March 16, 1999

Show all work for full credit. No calculators, books or notes are allowed. The point value of each problem is given in the margin.

<table>
<thead>
<tr>
<th>problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>points possible</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>100</td>
</tr>
</tbody>
</table>

In problems 1-7, evaluate the given integrals.

(12) 1. $\int_0^{\pi/8} \cos^3 4x \, dx$
(12) 2. $\int x \sec^2 x \, dx$

(12) 3. $\int \frac{x \, dx}{\sqrt{1 - x^4}}$ (Hint: Substitution works.)

(12) 4. $\int \sec^4 x \, dx$
(15) \[5. \int \frac{x^3 + 1}{x^4 + x^2} \, dx \]
(12) 6. \[\int \sqrt{9 + 4x^2} \, dx \]
(12) 7. \[\int \frac{dx}{\sqrt{2x - x^2}} \]
(13) 8. "Raphael’s horn" is the solid figure obtained by rotating the graph of $y = e^{-x}$ around the y-axis, from 0 to ∞. Find the volume of Raphael’s horn. (For full credit, set up the “volume element” in full detail.)