MA1006 ALGEBRA – List 3 - SOLUTIONS

1. Read the wikipedia articles on a polynomial, a linear equation and other types of equations, on the Galois theory and about Gauss.

2. What was the doctoral dissertation of Gauss about?

3. Solve the following quadratic equations:
 a. \(x^2 + 2x + 1 = 0 \).
 The solution is \(x = -1 \).
 b. \(x^2 + x + 1 = 0 \).
 There are no solutions.
 c. \(2x^2 + 3x + 4 = 0 \).
 There are no solutions.
 d. \(x^2 + ax + 2 = 0 \), where \(a \) is a real number.
 If \(a < 2\sqrt{2} \), there are no solutions. If \(a = 2\sqrt{2} \) then \(x = -\sqrt{2} \). If \(a > 2\sqrt{2} \), then
 \[x = \frac{-a \pm \sqrt{a^2 - 8}}{2}. \]

4. For which values of \(t \in \mathbb{R} \) the following equations have (i) two distinct real solutions, (ii) a unique real solution, (iii) no real solutions:
 a. \(tx^2 + 3x - 5 = 0 \).
 If \(t > -\frac{9}{20} \), \(t \neq 0 \), there are two solutions. If \(t = 0 \) or \(t = -\frac{9}{20} \) then there is only one solution. Finally, if \(t < -\frac{9}{20} \) there is no solution.
 b. \(x^2 + tx - 5 = 0 \).
 There are two solutions for any value of \(t \).
 c. \(x^2 + 3x - t = 0 \).
 If \(t > -\frac{9}{4} \) there are two solutions. If \(t = -\frac{9}{4} \) then there is only one solution. If \(t < -\frac{9}{4} \) there is no solution.

5. Find two real numbers \(a \) and \(b \) such that their sum and their product are both equal to five.
 We have to solve the system of equations
 \[\begin{cases}
 a + b = 5 \\
 ab = 5
 \end{cases} \]
 Notice that \(ab = 5 \) implies that both \(a, b \neq 0 \). Thus, \(b = \frac{5}{a} \). Replacing this in the first equation, we get \(a + \frac{5}{a} = 5 \), or equivalently \(a^2 + 5 = 5a \).
6. What is the smallest positive real number \(r \in \mathbb{R} \) such that there exists two real numbers \(a \) and \(b \) whose sum and product are both equal to \(r \)? What are \(a \) and \(b \) for this \(r \)?

Now we have to solve the system

\[
\begin{align*}
 a + b &= r \\
 ab &= r
\end{align*}
\]

Suppose for a second that \(r \neq 0 \). Then we can write \(b = \frac{r}{a} \), and replacing this in the first equation we get \(a + \frac{r}{a} = r \). The solutions of this equations are

\[
a = \frac{r \pm \sqrt{r^2 - 4r}}{2}.
\]

That is, the equation \(a^2 - ra + r = 0 \) has one or two solutions whenever \(r^2 - 4r \geq 0 \), and this implies that either \(r \leq 0 \) or \(r \geq 4 \).

Since we want the \textit{smallest positive} real number \(r \), the answer is \(r = 4 \). In this case, \(a = 2 = b \).

7. Divide (with remainder) each polynomial of degree at least two on this page by the polynomial:

a. \(x - 1 \):

- \(x^2 + 2x + 1 = (x - 1)(x + 3) + 4 \)
- \(x^2 + x + 1 = (x - 1)(x + 2) + 3 \)
- \(2x^2 + 3x + 4 = (x - 1)(2x + 5) + 9 \)
- \(x^2 + ax + 2 = (x - 1)(x + (a + 1)) + a + 3 \)
- \(tx^2 + 3x - 5 = (x - 1)(tx + (t + 3)) + t - 2, \ (t \neq 0) \)
- \(x^2 + tx - 5 = (x - 1)(x + (t + 1)) + t - 4 \)
- \(x^2 + 3x - t = (x - 1)(x + 4) + 4 - t \)
- \(x^2 + 1 = (x - 1)(x + 1) + 2 \)
- \(x^3 - 3x^2 + 3x - 1 = (x - 1)(x^2 - 2x + 1) \)
- \(x^3 + 12x^2 + 47x + 60 = (x - 1)(x^2 + 13x + 60) + 120 \)
- \(x^4 + x^3 - 19x^2 + 11x + 30 = (x - 1)(x^3 + 2x^2 + 17x + 28) + 58 \)
- \(x^5 - x^4 - 4x^3 + 3x^2 + 3x - 2 = (x - 1)(x^4 - 4x^2 - x + 2) \)
- \(x^{10} + 2x^9 - 2x^8 + 4x^7 + x^6 + 5x^5 + 2x^4 + 8x^3 + x^2 - x + 8 = \)
 \[\]
 \[= (x - 1)(x^9 + 3x^8 + x^7 + 5x^6 + 6x^5 + 11x^4 + 13x^3 + 21x^2 + 22x + 21) + 29.\]
b. \(x^2 + 1;\)
 \(\bullet \quad x^2 + 2x + 1 = (x^2 + 1) + 2x\)
 \(\bullet \quad x^2 + x + 1 = (x^2 + 1) + x\)
 \(\bullet \quad 2x^2 + 3x + 4 = (x^2 + 1)2 + 3x + 2\)
 \(\bullet \quad x^2 + ax + 2 = (x^2 + 1) + ax + 1\)
 \(\bullet \quad tx^2 + 3x - 5 = (x^2 + 1)t + 3x - 5 - t, \ (t \neq 0)\)
 \(\bullet \quad x^2 + tx - 5 = (x^2 + 1) + tx - 6\)
 \(\bullet \quad x^2 + 3x - t = (x^2 + 1) + 3x - 1 - t\)
 \(\bullet \quad x^2 + 1 = x^2 + 1\)
 \(\bullet \quad x^3 - 3x^2 + 3x - 1 = (x^2 + 1)(x - 3) + 2x + 2\)
 \(\bullet \quad x^3 + 12x^2 + 47x + 60 = (x^2 + 1)(x + 12) + 46x + 48\)
 \(\bullet \quad x^4 + x^3 - 19x^2 + 11x + 30 = (x^2 + 1)(x^2 + x - 20) + 10x + 50\)
 \(\bullet \quad x^5 - x^4 - 4x^3 + 3x^2 + 3x - 2 = (x^2 + 1)(x^3 - x^2 - 5x + 4) + 8x - 6\)
 \(\bullet \quad x^{10} + 2x^9 - 2x^8 + 4x^7 + x^6 + 5x^5 + 2x^4 + 8x^3 + x^2 - x + 8 =
 (x^2 + 1)(x^8 + 2x^7 - 3x^6 + 2x^5 + 4x^4 + 3x^3 - 2x^2 + 5x + 3) - 6x + 5\)

8. Solve the following polynomial equations.

a. \(x^3 - 3x^2 + 3x - 1 = 0;\)
 There is only one solution, \(x = 1.\)

b. \(x^3 + 12x^2 + 47x + 60 = 0;\)
 The solutions are \(x = -5, \ x = -4\) and \(x = -3.\)

c. \(x^4 + x^3 - 19x^2 + 11x + 30 = 0;\)
 The solutions are \(x = -5, \ x = -1, \ x = 2\) and \(x = 3.\)

d. \(x^5 - x^4 - 4x^3 + 3x^2 + 3x - 2 = 0.\)
 The solutions are \(x = -1, \ x = 1, \ x = 2\) and \(x = \frac{-1 \pm \sqrt{3}}{2}.\)

9. Prove that the polynomial \(x^{10} + 2x^9 - 2x^8 + 4x^7 + x^6 + 5x^5 + 2x^4 + 8x^3 + x^2 - x + 8\) does not have rational roots. Can you remember, without checking the lecture notes, the general theorem about rational roots of polynomials?

If \(r = \frac{p}{q}\) is a rational root of this polynomial, with \(\text{gcd}(p, q) = 1,\) then we know that \(p\) divides 8 and \(q\) divides 1. Thus, the only possible rational roots of this polynomial are \(\pm 1, \pm 2, \pm 4, \pm 8.\) Since none of these numbers is a root (check it!), we deduce that this polynomial does not have any rational solution.
10. Let \(f, g : \mathbb{R} \rightarrow \mathbb{R} \) be two polynomial functions defined by \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) and \(g(x) = b_n x^n + b_{n-1} x^{n-1} + \ldots + b_1 x + b_0 \), where \(a_i, b_i \in \mathbb{R} \). Observe that the composition \(g \circ f \) is also a polynomial function.

a. Compute several concrete examples in low degrees to gain intuition.

For instance, if \(f(x) = x^2 + 1 \) and \(g(x) = x - 1 \), then \((g \circ f)(x) = x^2\), while \((f \circ g)(x) = x^2 - 2x + 2\) (hence, composition of polynomials is not commutative!).

Another example: \(f(x) = x^2 + 3 \) and \(g(x) = 2x^2 - 3x + 4 \). Then,

\[
(g \circ f)(x) = g(f(x)) = g(x^2 + 3) = 2(x^2 + 3)^2 - 3(x^2 + 3) + 4 = 2(x^4 + 6x^2 + 9) - 3(x^2 + 3) + 4 = 2x^4 + 9x^2 + 13
\]

b. What is the degree of \(g \circ f \)?

\[
\deg(g \circ f) = \deg(g) \cdot \deg(f) = n^2.
\]

c. Compute the highest degree coefficient of \(g \circ f \) in terms of the coefficients of \(f \) and \(g \).

In \((g \circ f)(x)\) there is only one term \(x^{n^2}\), and its coefficient is \(a_n^2 b_n\).

d. Compute the free coefficient of \(g \circ f \) in terms of the coefficients of \(f \) and \(g \).

The formula for the free coefficient is \(\sum_{i=0}^{n} a_i b_i\).

e. Prove the following statement: if \(g \) has no real roots then \(g \circ f \) has no real roots.

Let \(P(x) = (g \circ f)(x) \) for short, and suppose that \(r \in \mathbb{R} \) is a root of \(P(x) \). That is, \(P(r) = 0 \). Then,

\[
0 = P(r) = (g \circ f)(r) = g(f(r)),
\]

and thus \(f(r) \) is a root of \(g \).

f. Prove that the following statement is false: if \(f \) has no real roots then \(g \circ f \) has no real roots.

The first example we tried (in this exercise) is already a counterexample for this statement: \(f(x) = x^2 + 1 \) has no real roots, but the composition of \(f(x) \) with \(g(x) = x - 1 \) is \((g \circ f)(x) = (x^2 + 1) - 1 = x^2\), and this polynomial has a real root, \(r = 0 \).

Summary of Week 3:

- Polynomial equations.
- Long division of polynomials.
- A theorem on rational solutions of polynomial equations.