Introduction

What is Spanning Tree Modulus?
- Spanning tree modulus measures the “richness” of a family of spanning trees on a network
- $\rho \in \mathbb{R}_{>0}$ a set of edge weights
- \mathcal{N} is the usage matrix for each edge in each spanning tree
- $\text{Mod}(T) := \min_{\rho \geq 1} \rho^T \rho$

Probabilistic Interpretation [1]
- $\mu \in \mathcal{P}(T)$ is a pmf on spanning trees
- T is a random variable representing a spanning tree such that $\mu(T)$ is the probability of choosing T
- $\eta = \mathcal{N}^T \mu$ is the probability that an edge is in a random spanning tree

minimize $\sum_{e \in E} \mathbb{P}(e \in T)^2$

subject to $\mu \in \mathcal{P}(T)$
- μ^* is an optimal pmf on T
- η^* is the optimal usage of edges in spanning trees

Homogeneous
- $\rho = (|V| - 1)^{-1}$ is always admissible
- A graph is homogeneous if $\rho^* = (|V| - 1)^{-1}$
- If a graph is homogeneous, $\text{Mod}(T) = \frac{|E|}{(|V| - 1)^2} \Rightarrow \eta^* = \frac{|V| - 1}{|E|}$

Regular, Connected
- A graph is d-regular if every node has degree d
- A graph is k-connected if a graph cannot be disconnected by removing fewer than k nodes

Results

Theorem: Each edge in a graph G is in the same number of spanning trees if and only if G is a uniform homogeneous graph.

Theorem: For $k \geq 3$, a k-regular, k-connected graph is homogeneous.

It is also proven that as d gets large, d-regular graphs are almost surely d-connected [2]. Our theorem then proves that as d gets large, d-regular graphs are almost surely homogeneous.

References

Acknowledgements

This research was conducted under mentor Nathan Albin at Kansas State University SUMaR under support of NSF grant number DMS-1262877 and NSF grant number DMS-1515810.

Contact Information

Derek Hoare: Kenyon College
hoared@kenyon.edu

Sarah Tymochko: College of the Holy Cross
sjtymo17@g.holycross.edu

Brandon Sit: University of Portland
sit18@up.edu

Dr. Nathan Albin: Kansas State University
albin@math.ksu.edu

Figures

Figure 1: 1-connected, 3-regular graph, labeled with η values

Figure 2: Example of Deflation

- $\eta_{\text{max}} = 0.167$
- $\eta_{\text{max}} = 0.167$
- $\eta_{\text{max}} = 0.222$
- $\eta_{\text{max}} = 0.286$
- $\eta_{\text{max}} = 0.500$

Figure 3: Every cycle is uniform homogeneous.

Figure 4: The complete bipartite graph $K_{n,n}$ is homogeneous.