Characterization of Extinction Time and Approximation by Explicit Solutions for Total Variation Flow

Jack Luong, Ryan McConnell, Jill Vesta
SUMaR 2018, Kansas State University

1D Case

Proposition (HKS 2016)

Let \(-\infty < x_1 < \cdots < x_m < \infty\), \(I_0 = (-\infty, x_1)\), \(I_i \in \{1, 2, \ldots, m-1\}\) \(I_i = (x_i, x_{i+1})\), and \(I_m = (x_m, \infty)\). Let \(A_0, \ldots, A_m \in \mathbb{R}\) and, for all \(i \in \{0, \ldots, m-1\}\), \(A_i \neq A_{i+1}\) and \(b_i = \text{sgn}(A_{i+1} - A_i)\). The solution to (1) with initial datum \(u_0 = \sum_{i=0}^{m-1} A_i \chi_{I_i}\) is given by

\[
u(x, t) = \sum_{i=1}^{m-1} \left[b_i - b_{i-1} - A_i \right] \chi_{I_i}(x),
\]

(2)

until the least time, \(T\), where \(u(\cdot, \bar{T})|_{I_i} = \nu(\cdot, \bar{T})|_{I_i}\) for some \(i\). We then consolidate the intervals and iterate the proposition using \(\nu(x, \bar{T}) = u(x, \bar{T})\). We continue in this fashion until the solution stabilizes.

Proposition (Regions of Constancy)

Let \(u_1 \in L^1_{\text{loc}}(\mathbb{R}^n)\) be radial, \(u\) be the solution emanating from \(u_1\), and \(J \subset \mathbb{R}^n\) be an annulus or ball centered at \(x_0 = 0\). Then there is a sequence of explicit solutions \((u_k(x, t))_{k=1}^\infty\) such that \(u_k \xrightarrow{k \to \infty} u\) as \(k \to \infty\).

Proposition (Local Behavior of Monotone Segments)

Let \(u_1 \in L^1(\mathbb{R})\), \(J \subset \mathbb{R}\) be an open interval such that \(u_1(J) = \{c\}\) for some constant \(c \in \mathbb{R}\). Then there is a continuous function, \(c(t) : \mathbb{R} \to \mathbb{R}\), such that \(u(J(t)) = \{c(t)\}\).

Extinction Time

Proposition

Suppose \(u(x, t) \in L^1_{\text{loc}}(\mathbb{R}^n)\) is continuous with compact support. Let \(x_0\) denote the finite values of \(x\) such that \(u(x, 0) = 0\) and \(x \neq x_0\) such that for all \(x_n \in (x_n - \epsilon, x_n + \epsilon)\), \(x_n \neq x_0\), \(u(x_n, 0) \cdot u(x_n, t)\) for all \(x_n < x_n\), \(u(x_n) = 0\) and \(x_n > x_0\), \(u(x_n) = 0\). Next, let \(R_n = [x_n, x_{n+1}]\). Finally, denote \(M = \frac{1}{n} \max\{n, |u|dx, n_2, |u|dx, \ldots, n_n, |u|dx\}\.

Then, the extinction time of \(u, T\), is governed by the inequality

\[M \leq T \leq \frac{1}{2} \left(\left| (\int u^2) \right|, \left| (\int u) \right| \right).\]

References

Acknowledgements

We would like to thank Dr. Marianne Korten, Kansas State University, and the organizers and participants of the SUMaR 2018 program. This research was supported by NSF grant DMS-1659123.