Multi-Skein Invariants for Welded and Extended Welded Knots and Links

Nick Backes, Megan Kaiser, Tim Leafblad, Emma I.C. Peterson
Faculty Mentor: D. N. Yetter

University of Minnesota, North Central College, Truman State University, University of Minnesota, Kansas State University

July 20, 2019
Overview

- Background
 - Knots and Links
 - Reidemeister Moves
 - Invariants
- Setup
 - Yang-Type Skein Relation
- Results
 - Welded
 - Extended Welded
Knots

What is a mathematical knot?

- Tie a knot on a string and splice the ends together
- A **classical knot** is an embedding of the circle into \mathbb{R}^3 up to ambient isotopy
- A **link** is an embedding of a disjoint union of circles
- Useful to represent as a two-dimensional diagram
Diagram Examples\(^1\)

Types of Crossings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Diagram</th>
<th>4-Dimensional2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wen Mark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N. Backes, M. Kaiser, T. Leafblad, E. I. C. Peterson
Virtual, Welded, and Extended Welded Links

- Classical links can be extended by introducing these additional types of crossings
- **Virtual** and **Welded links** have cryptic geometric interpretations and are most conveniently understood diagrammatically
- **Extended welded links** encode restricted embeddings of tori in \mathbb{R}^4
Reidemeister Moves

Two link diagrams represent the same link if they are related by a sequence of Reidemeister moves:

- (R1a)
- (R1b)
- (R2)
- (R3)
- (V1)
- (V2)
- (V3)
- (M)
- (W)
- (E1)
- (E2)
- (E3)
- (E4)
Knot Invariants

• What is an invariant?
 • Quantitative method of telling knots apart
 • Equivalent knot diagrams compute to the same value
 • However, diagrams of different knots may also compute to the same value
 • If two knot diagrams compute to different values then they represent different knots
• Examples include the Alexander polynomial, the Jones polynomial, and the HOMFLY polynomial
 • Does not have to be a polynomial (e.g. tricolorability)
Yang’s Skein Relation

\[
\begin{align*}
[\underleftarrow{\underrightarrow{\cdot}}] &= a[\underleftarrow{\underrightarrow{\cdot}}] + b[\overleftarrow{\overrightarrow{\cdot}}] + c[\underleftarrow{\overrightarrow{\cdot}}] \\
[\underleftarrow{\overrightarrow{\cdot}}] &= x[\underleftarrow{\overrightarrow{\cdot}}] + y[\overleftarrow{\overrightarrow{\cdot}}] + z[\overleftarrow{\overrightarrow{\cdot}}]
\end{align*}
\]

- Semi-oriented, multi-skein relation
 - Positive and negative crossings replaced by virtual crossing, uncrossing, and turnaround
- \([L]\) means we compute the polynomial of the link \(L\) using the skein relation
- As stated, this skein relation does not compute a knot invariant
Goal

- Use Yang’s multi-skein relation to construct polynomial invariants of welded and extended welded links by imposing invariance under Reidemeister moves
Important Conventions

- Removing a disjoint unknot
 - \([L \cup \bigcirc] = t[L]\)
- V1
 - \(\begin{array}{c}
 L

 \end{array} = r \begin{array}{c}
 L
 \end{array}\)
 - \(r = \pm 1\)
- Trivially have invariance under V2 and V3; invariance under M follows directly from these
- With the skein relation and these conventions all knots reduce to \(P[\]\)
\[
\begin{align*}
\begin{bmatrix}
\end{bmatrix}^{(R2)} & = a \begin{bmatrix}
\end{bmatrix} + b \begin{bmatrix}
\end{bmatrix} + c \begin{bmatrix}
\end{bmatrix} \\
\begin{bmatrix}
\end{bmatrix} & = x \begin{bmatrix}
\end{bmatrix} + y \begin{bmatrix}
\end{bmatrix} + z \begin{bmatrix}
\end{bmatrix}
\end{align*}
\]
\[
\begin{align*}
\begin{pmatrix}
\text{R2} \\
\end{pmatrix}
&= x \begin{pmatrix}
\text{R2}
\end{pmatrix} + y \begin{pmatrix}
\text{ExtR2}
\end{pmatrix} + z \begin{pmatrix}
\text{ExtExtR2}
\end{pmatrix} \\
&= ax \begin{pmatrix}
\text{R2}
\end{pmatrix} + bx \begin{pmatrix}
\text{ExtR2}
\end{pmatrix} + cx \begin{pmatrix}
\text{ExtExtR2}
\end{pmatrix} + \\
&\quad ay \begin{pmatrix}
\text{R2}
\end{pmatrix} + by \begin{pmatrix}
\text{ExtR2}
\end{pmatrix} + cy \begin{pmatrix}
\text{ExtExtR2}
\end{pmatrix} + \\
&\quad az \begin{pmatrix}
\text{R2}
\end{pmatrix} + bz \begin{pmatrix}
\text{ExtR2}
\end{pmatrix} + cz \begin{pmatrix}
\text{ExtExtR2}
\end{pmatrix}
\end{align*}
\]
R2 Conditions

\[
\begin{bmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma \\
\delta
\end{pmatrix}
\end{bmatrix}
= (ay + bx) \begin{bmatrix}
\times
\end{bmatrix} + (ax + by) \begin{bmatrix}
\times \times
\end{bmatrix}
+ (azr + cxr + bz + cy + czt) \begin{bmatrix}
\times
\end{bmatrix}
\]

- \(ay + bx = 0 \)
- \(ax + by = 1 \)
- \(azr + cxr + bz + cy + czt = 0 \)
We then derive the following equations for \(x, y, \) and \(z \):

\[
\begin{align*}
x &= \frac{-a}{b^2 - a^2} \\
y &= \frac{b}{b^2 - a^2} \\
z &= \frac{rac - bc}{(b^2 - a^2)(ar + b + ct)}
\end{align*}
\]

[\(L \)] is now invariant under R2
Welded

\[
\begin{align*}
\begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix}
&= a^2 \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix} + ab \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,0);
\draw[<->,dotted] (1,1) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix} + ac \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\draw[->] (0,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix} + \\
abla \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix} + \nabla \nabla \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\draw[->] (0,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix}
+ b^2 \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\end{tikzpicture}
\end{array}
\end{bmatrix} + bc \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\draw[->] (0,0) -- (1,1);
\draw[<->,dotted] (1,0) -- (0,1);
\end{tikzpicture}
\end{array}
\end{bmatrix} + c^2 \begin{bmatrix}
\begin{array}{c}
\begin{tikzpicture}[scale=0.5]
\end{tikzpicture}
\end{array}
\end{bmatrix} + \\
\end{align*}
\]

\begin{flushright}
N. Backes, M. Kaiser, T. Leafblad, E. I. C. Peterson
\end{flushright}
\[
\begin{align*}
&= a^2 \begin{bmatrix} \text{Diagram 1} \end{bmatrix} + ab \begin{bmatrix} \text{Diagram 2} \end{bmatrix} + ac \begin{bmatrix} \text{Diagram 3} \end{bmatrix} + \\
&+ ab \begin{bmatrix} \text{Diagram 4} \end{bmatrix} + b^2 \begin{bmatrix} \text{Diagram 5} \end{bmatrix} + bc \begin{bmatrix} \text{Diagram 6} \end{bmatrix} + \\
&+ ac \begin{bmatrix} \text{Diagram 7} \end{bmatrix} + bcr \begin{bmatrix} \text{Diagram 8} \end{bmatrix} + c^2 \begin{bmatrix} \text{Diagram 9} \end{bmatrix} \end{align*}
\]
Welded Conditions

\[b^2 \left[\begin{array}{c} \includegraphics[height=1cm]{diagram1} \\ \includegraphics[height=1cm]{diagram2} \end{array} \right] + bc \left[\begin{array}{c} \includegraphics[height=1cm]{diagram3} \\ \includegraphics[height=1cm]{diagram4} \end{array} \right] + bcr \left[\begin{array}{c} \includegraphics[height=1cm]{diagram5} \\ \includegraphics[height=1cm]{diagram6} \end{array} \right] + c^2 \left[\begin{array}{c} \includegraphics[height=1cm]{diagram7} \\ \includegraphics[height=1cm]{diagram8} \end{array} \right] \]

- This equation is only satisfied when we set \(b = 0 \) and \(c = 0 \)
- Instead we consider the diagrams in a more global context by considering closures
- We don’t actually need the sum of tangles to be equal
 - We only need the sum to be equal for all possible knots
All Possible Knots in 15 Closures

- Luckily, all possible knots reduce to only fifteen cases
 - Classical crossings on the outside reduce to either virtual crossings or no crossing by applying the skein relation
 - Any combination of virtual crossings on the outside can be reduced by V1, V2, and V3

- Consider all ways to connect the nodes without connecting any node to itself
All Possible Knots in 15 Closures

- Luckily, all possible knots reduce to only fifteen cases
 - Classical crossings on the outside reduce to either virtual crossings or no crossing by applying the skein relation
 - Any combination of virtual crossings on the outside can be reduced by V1, V2, and V3

- Consider all ways to connect the nodes without connecting any node to itself
All Possible Knots in 15 Closures

- Luckily, all possible knots reduce to only fifteen cases
 - Classical crossings on the outside reduce to either virtual crossings or no crossing by applying the skein relation
 - Any combination of virtual crossings on the outside can be reduced by V1, V2, and V3

- Consider all ways to connect the nodes without connecting any node to itself
Result of Considering Closures

\[
b^2 \left(\begin{array}{c} x \\ y \\ z \end{array} \right) + bc \left(\begin{array}{c} a \\ b \\ c \end{array} \right) + bcr \left(\begin{array}{c} d \\ e \\ f \end{array} \right) + c^2 \left(\begin{array}{c} g \\ h \\ i \end{array} \right) = b^2 \left(\begin{array}{c} j \\ k \\ l \end{array} \right) + bc \left(\begin{array}{c} m \\ n \\ o \end{array} \right) + bcr \left(\begin{array}{c} p \\ q \\ r \end{array} \right) + c^2 \left(\begin{array}{c} s \\ t \\ u \end{array} \right)
\]

- Close each tangle in the above equation into a knot
- Three distinct equations not immediately satisfied
 1. \(b^2 + bc + bct + c^2 = b^2 t + bct^2 + bc + c^2 t \)
 2. \(b^2 + 2bct + c^2 t^2 = b^2 t + 2bc + c^2 \)
 3. \(b^2 t^2 + 2bct + c^2 = b^2 + 2bc + c^2 t \)
- \(t = 1 \) makes the trivial invariant
- \(b = \pm c; \ t = \mp 2 \)
Review of R2 and W

\[
\begin{align*}
\begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix} &= a \begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix} + b \begin{bmatrix}
\downarrow & \uparrow \\
\end{bmatrix} + c \begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix} \\
\begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix} &= x \begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix} + y \begin{bmatrix}
\downarrow & \uparrow \\
\end{bmatrix} + z \begin{bmatrix}
\downarrow & \downarrow \\
\end{bmatrix}
\end{align*}
\]

- These relations yield values invariant under R2 when subject to the following conditions:

\[
\begin{align*}
x &= \frac{-a}{b^2 - a^2} \\
y &= \frac{b}{b^2 - a^2} \\
z &= \frac{rac - bc}{(b^2 - a^2)(ar + b + ct)}
\end{align*}
\]
Review of R2 and W

- If in addition either of the following conditions hold
 - \(b = c, t = -2 \) with \(r = \pm 1 \)
 - \(b = -c, t = 2 \) with \(r = \pm 1 \)

 then \([L] \) becomes invariant under R2 and W

- Invariance under R3 follows directly from R2 and W
Writhe

\[w(L) = \# \text{positive crossings} - \# \text{negative crossings} \]

\[v(L) = \# \text{virtual crossings} \]

Then \(Y(L) = r^v(L)A^{-w(L)}[L] \) is an invariant of welded links.

- We have shown that \([L]\) is invariant under every Reidemeister move for welded links except for R1
- \(r^v(L)A^{-w(L)} \) is also invariant under these moves; hence \(Y(L) \) is as well
- All that remains is to show that \(Y(L) \) is invariant under R1 and V1
Invariance under R1 and V1

Let \(L = \text{[square]} \) and \(L' = \text{[square]}. \)

Then \(w(L') = w(L) + 1 \), and we have

\[
Y(L') = A^{-w(L')} [L'] \\
= A^{-(w(L)+1)} [L'] \\
= A^{-(w(L)+1)} A [L] \\
= A^{-w(L)} [L] \\
= Y(L).
\]

V1 and R1b are shown similarly.
R1 Via Writhe Correction

\[
\begin{align*}
\begin{bmatrix}
 L \\
\end{bmatrix} &= A \begin{bmatrix}
 L \\
\end{bmatrix} = (ar + bt + c) \begin{bmatrix}
 L \\
\end{bmatrix} \\
\begin{bmatrix}
 L \\
\end{bmatrix} &= A^{-1} \begin{bmatrix}
 L \\
\end{bmatrix} = (xr + yt + z) \begin{bmatrix}
 L \\
\end{bmatrix}
\end{align*}
\]

- Condition required for writhe correction:
 \((ar + bt + c)(xr + yt + z) = 1\)
- All 4 cases invariant under \(W\) satisfy this equation without additional constraints on the variables
- \(Y(L)\) is an invariant of welded knots and links
 \(Y(L) = r^{v(L)}(ar + bt + c)^{-w(L)}[L]\)
Extended Moves

- Need to do welded Reidemeister move with wen marks
- Note that E4 turns a positive crossing into a negative crossing
 - Writhe only works if $A = A^{-1}$
- We have invariance under E1 and E2 trivially
- Obtain invariance under E3 and E4 by considering closures
 - Must also allow wen marks to appear on the closure
 - E3 does not require any additional constraints
E4 Constraints

- We get the following equations from E4:

\[ar + b + ct = xr + y + zt \]
\[at + br + cr = xt + yr + zr \]
\[ar + bt + c = xr + yt + z \]

- \(b = -c \Rightarrow a = 0 \) or \(b = c = 0 \)
- \(b = c \)
 - \(b = ra - 1 \)
 - \(b = ra + 1 \)
 - These give 1 or \(-1\), respectively, for writhe factor
The rational function \(Y(L) = r^{v(L)}(ar + bt + c)^{-w(L)}[L] \) is an invariant of welded knots and links, where \([L]\) is computed by the following skein relation

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{crossing}}
\end{array}
\end{array}
\end{align*}
= a \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{positive_crossing}}
\end{array}
\end{array} + b \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{virtual_crossing}}
\end{array}
\end{array} + c \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{negative_crossing}}
\end{array}
\end{array}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{crossing}}
\end{array}
\end{array}
\end{align*}
= x \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{positive_crossing}}
\end{array}
\end{array} + y \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{virtual_crossing}}
\end{array}
\end{array} + z \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{negative_crossing}}
\end{array}
\end{array}
\]

and \(v(L) \) and \(w(L) \) are given by

\[
\begin{align*}
w(L) &= \# \text{positive crossings} - \# \text{negative crossings} \\
v(L) &= \# \text{virtual crossings}
\end{align*}
\]
Summary

- Subject to all of the following relations:
 - \(x = \frac{-a}{b^2 - a^2} \)
 - \(y = \frac{b}{b^2 - a^2} \)
 - \(z = \frac{rac - bc}{(b^2 - a^2)(ct + ra + b)} \)
 - \(r = \pm 1 \)

- And subject to one of the following:
 - \(b = c, t = -2 \)
 - \(b = -c, t = 2 \)

- Moreover, if we take the \(b = c \) option above and impose one of the following, then \(Y(L) \) is an invariant of extended welded knots and links:
 - \(b = ra - 1 \)
 - \(b = ra + 1 \)
Example Calculations of Polynomial

- Here are some example calculations of our invariant, with the following conditions:
 - $r = 1$
 - $t = 2$
 - $c = -b$

\[
Y(\text{Diagram 1}) = \frac{4(a^2+b^2)}{(a+b)^2}
\]

\[
Y(\text{Diagram 2}) = \frac{4a}{a+b}
\]

\[
Y(\text{Diagram 3}) = 2
\]
Future Research

- Restrict our polynomial to classical knots and links
 - Vasseliev Invariants
- Computation of polynomial for different knot examples
- Solving for turnarounds to produce a HOMFLY type skein relation
- Obtain an invariant of ribbon torus-links by considering mirror imaging
- Explore other skein relations in the context of welded and extended welded knots and links

This research was carried out at the Summer Undergraduate Math Research (SUMaR) REU at Kansas State University funded by the NSF under DMS award #1659123.

Special thanks to Dr. Yetter for his guidance throughout the project.
Questions?

Please feel free to contact me at tal8458@truman.edu with further inquiries!

Additionally, a preprint of our paper is available on arXiv under the title “Multi-Skein Invariants for Welded and Extended Welded Knots and Links” (arXiv:1809.05874 [math.GT])