Characterization of Extinction Time and Approximation by Explicit Solutions for Total Variation Flow

Jack Luong, Ryan McConnell, Jill Vesta

SUMaR 2018
Kansas State University
NSF Grant #DMS-1659123
Mentor: Dr. Marianne Korten

July 25, 2018
The TVF is given by $u_t = \text{div}_x \frac{\nabla_x u}{|\nabla_x u|}$.
The TVF is given by \(u_t = \text{div}_x \frac{\nabla_x u}{|\nabla_x u|} \).

- Previously studied by Andreu-Vaillo, Caselles, and Mazón; Bellettini, Caselles, and Novaga; Bonforte and Figalli
Introduction
Total Variation Flow (TVF)

The TVF is given by $u_t = \text{div}_x \frac{\nabla_x u}{|\nabla_x u|}$.

- Previously studied by Andreu-Vaillo, Caselles, and Mazón; Bellettini, Caselles, and Novaga; Bonforte and Figalli
- Applications for TVF include image processing, preventative policing
Classical problem:
If \(u_I \in L^1_{loc}(\mathbb{R}^N) \) then a classical solution to the TVF is a differentiable function \(u : \mathbb{R}^N \times (0, T) \to \mathbb{R} \) with

\[
\frac{\partial u}{\partial t} = \text{div}_x \left(\frac{\nabla_x u}{|\nabla_x u|} \right).
\]
Total Variation Flow
Classical and Strong Solutions

- Classical problem:
 If \(u_I \in L^1_{loc}(\mathbb{R}^N) \) then a classical solution to the TVF is a differentiable function \(u : \mathbb{R}^N \times (0, T) \to \mathbb{R} \) with
 \[
 \frac{\partial u}{\partial t} = \text{div}_x \left(\frac{\nabla_x u}{|\nabla_x u|} \right).
 \]

- Strong formulation with solution \(u : (0, T) \times \mathbb{R}^N \to \mathbb{R} \):
 \[
 \begin{cases}
 u_t(x, t) = \text{div}_x z(x, t) \text{ in } D'((\mathbb{R}^N) \times (0, \infty)) \\
 |z| \leq 1 \\
 \int_0^T \int_{\mathbb{R}^N} \nabla_x u \cdot z \, dxdt = \int_0^T \int_{\mathbb{R}^N} |\nabla_x u| \, dxdt
 \end{cases}
 \]
Definition (1/2)

Let \(P = \{ p \in W^{1,\infty}(\mathbb{R}) : p' \geq 0, \text{supp } p' \text{ is compact} \} \). For all \(\ell \in \mathbb{R} \), all \(\eta \in C^\infty((0, T) \times \mathbb{R}^N) \), with \(\eta \geq 0 \), \(\eta(t, x) = \phi(t)\psi(x) \), where \(\phi \in C^\infty_0((0, T)) \), \(\psi \in C^\infty_0(\mathbb{R}^N) \), and \(p \in P \), where \(j(r) = \int_0^r p(s) \, ds \).

\(u \in C([0, T]; L^1_{loc}) \) is an entropy solution if

- \(u(\cdot, t) \to u_1(\cdot) \) in \(L^1_{loc} \) as \(t \to 0^+ \).
- \(p(u) \in L^1_w((0, T); BV_{loc}(\mathbb{R}^N)) \) for all \(p \in P \).
Definition (2/2)

- there exists \(z \in L^\infty(\mathbb{R}^N \times (0, T)) \) such that \(|z| \leq 1 \),

\[
 u_t = \text{div}_x z \text{ in } D'(\mathbb{R}^N \times (0, T))
\]

and

\[
 - \int_0^T \int_{\mathbb{R}^N} j(u - \ell) \eta_t + \int_0^T \int_{\mathbb{R}^N} \eta \, d|D(p(u - \ell))| \\
 + \int_0^T \int_{\mathbb{R}^N} z \nabla \eta p(u - \ell) \leq 0
\]
Entropy solutions meet a number of properties:

Theorem (BCN 2002)

For every $u_I \in L^1_{\text{loc}}$ there exists a unique entropy solution.
Entropy solutions meet a number of properties:

Theorem (BCN 2002)

For every $u_I \in L^1_{\text{loc}}$ there exists a unique entropy solution.

Theorem (BCN 2002)

If u and v are entropy solutions with initial data u_I and v_I, resp. with $u_I \leq v_I$, then $u \leq v$.
Entropy solutions meet a number of properties:

Theorem (BCN 2002)

For every $u_I \in L^1_{loc}$ there exists a unique entropy solution.

Theorem (BCN 2002)

If u and v are entropy solutions with initial data u_I and v_I, resp. with $u_I \leq v_I$, then $u \leq v$.

Theorem (BCN 2002)

If $u_I, u_{I,n} \in L^1_{loc}(\mathbb{R}^N)$ with $u_{I,n} \rightarrow u_I$ in L^1_{loc} have entropy solutions u and u_n respectively, then for all compact K,

$$\sup_{t \in (0,T)} \int_K |u(x, t) - u_n(x, t)| \, dx \rightarrow 0 \text{ as } n \rightarrow \infty.$$
Approximations by Explicit Solutions

Main Result

Proposition (HKS 2016)

Let A_1, \ldots, A_{m+1} be real constants with $A_{m+1} = 0$ and $A_i \neq A_{i+1}$ for $i = 1, \ldots, m$, and $0 = r_0 < r_1 < \cdots < r_m$. For $i = 1, \cdots, m$, let χ_i be the annulus with inner radius r_{i-1} and outer radius r_m. Let $b_i = \text{sgn}(A_{i+1} - A_i)$ and $b_0 = 0$. If

$$u_I(x) = \sum_{i=1}^{m} A_i \chi_i(x).$$

Then the evolution of u_I under TVF is given by

$$u(x, t) = \sum_{i=1}^{m} \left(\frac{b_i \mathcal{H}^{N-1}(\partial B_{r_i}) - b_{i-1} \mathcal{H}^{N-1}(\partial B_{r_{i-1}})}{\mathcal{L}^N(B_{r_i}) - \mathcal{L}^N(B_{r_{i-1}})} t + A_i \right) \chi_i(x).$$
Approximations by Explicit Solutions

Pictorial Example
Approximations by Explicit Solutions

Interpretations

- All points on an annuli move together
Approximations by Explicit Solutions

Interpretations

- All points on an annuli move together
- Iterative process, we repeat every time two annuli merge
Approximations by Explicit Solutions

Interpretations

- All points on an annuli move together
- Iterative process, we repeat every time two annuli merge
- Every annulus moves “independently"
Approximations by Explicit Solutions

Interpretations

- All points on an annuli move together
- Iterative process, we repeat every time two annuli merge
- Every annulus moves “independently"
- An annulus moves in the direction of its outer annulus neighbor
Approximations by Explicit Solutions

Interpretations

- All points on an annuli move together
- Iterative process, we repeat every time two annuli merge
- Every annulus moves “independently"
- An annulus moves in the direction of its outer annulus neighbor
- Eventually, all annuli have zero height (time it takes = Extinction Time)
Approximations by Explicit Solutions

Pictorial Example

\[u_I \]

\[\Omega_1 \]

\[\Omega_2 \]

\[\Omega_3 \]

\[A_1 \]

\[A_2 \]

\[A_3 \]
The outermost region need not have 0 height

Corollary (KLMV 2018)

If \(u_i(x) = \sum_{i=1}^{m+1} A_i \chi_i(x) \) (recall \(\Omega_{m+1} \) refers to the region out of the annuli), then

\[
u(x, t) = \sum_{i=1}^{m} \left(\frac{b_i \mathcal{H}^{N-1}(\partial B_{r_i}) - b_{i-1} \mathcal{H}^{N-1}(\partial B_{r_{i-1}})}{\mathcal{L}^N(B_{r_i}) - \mathcal{L}^N(B_{r_{i-1}})} \right) t + A_i \chi_i(x) + A_{m+1} \chi_{m+1}(x)
\]

and \(u(x, t) \to A_{m+1} \) as \(t \to \infty \).
Approximations by Explicit Solutions
Another Pictorial Example
Proposition (KLMV 2018)

Let $0 \leq u_I : \mathbb{R}^n \to \mathbb{R}$ be a continuous compactly supported radial initial datum with profile curve f and let u be the evolution of u_I under TVF. Then there exists an increasing sequence of explicit solutions $u_n(x, t)$ such

$$u_n \xrightarrow{L^1_{loc}} u \text{ as } n \to \infty.$$
Proposition (KLMV 2018)

Let $0 \leq u_I : \mathbb{R}^n \to \mathbb{R}$ be a continuous compactly supported radial initial datum with profile curve f and let u be the evolution of u_I under TVF. Then there exists an increasing sequence of explicit solutions $u_n(x, t)$ such

$$ u_n \xrightarrow{L^1_{\text{loc}}} u \text{ as } n \to \infty. $$

Theorem (KLMV 2018)

Let $0 \leq u_I \in L^1_{\text{loc}}(\mathbb{R}^n)$ be radial initial data, u be the evolution of u_I under TVF, and $f(|x|) := u_I(x)$. Then there exists a sequence of explicit solutions $(u_k(x, t))_k$ such

$$ u_k \xrightarrow{L^1_{\text{loc}}} u \text{ as } k \to \infty. $$
Approximations by Explicit Solutions

Pictorial Example

\[u_l \]

\[r \]

\[j = 1 \]

\[j = 2 \]

\[j = 3 \]

\[j = 4 \]
Proposition (HKS 2016)

Let $-\infty < x_1 < \cdots < x_m < \infty$, $l_0 = (-\infty, x_1)$, $\forall i \in \{1, 2, \cdots, m-1\}$ \(l_i = [x_i, x_{i+1})\), and $l_m = [x_m, \infty)$. Let $A_0, \ldots, A_m \in \mathbb{R}$ and, $\forall i \in \{0, \cdots, m-1\}$, $A_i \neq A_{i+1}$ and $b_i = \text{sgn}(A_{i+1} - A_i)$. Then the solution with initial datum $u_I = \sum_{i=0}^{m} A_i \chi_{l_i}$ is given by

$$u(x, t) = \sum_{i=1}^{m-1} \left(\frac{b_i - b_{i-1}}{x_i - x_{i-1}} t + A_i \right) \chi_{l_i}(x) + A_0 \chi_0 + A_m \chi_m$$
Properties

Solution Form

\[u(x, t) = \sum_{i=1}^{m-1} \left(\frac{b_i - b_{i-1}}{x_i - x_{i-1}} t + A_i \right) \chi I_i(x) + A_0 \chi_0 + A_m \chi_m \]
Properties

Solution Form

\[u(x, t) = \sum_{i=1}^{m-1} \left(\frac{b_i - b_{i-1}}{x_i - x_{i-1}} t + A_i \right) \chi_{I_i}(x) + A_0 \chi_0 + A_m \chi_m \]

- Only finite mass local minimums/maxima move
Solution Form

\[u(x, t) = \sum_{i=1}^{m-1} \left(\frac{b_i - b_{i-1}}{x_i - x_{i-1}} t + A_i \right) \chi_I_i(x) + A_0 \chi_0 + A_m \chi_m \]

- Only finite mass local minimums/maximums move
- Will stabilize to a monotone function
Theorem (KLMV 2018)

If $u_I(x)$ is a monotone function on \mathbb{R}, then the solution given initial datum $u_I(x)$ is $u(x, t) \equiv u_I(x)$ a.e.
A Degenerate Example

Theorem (KLMV 2018)

If $u_I(x)$ is a monotone function on \mathbb{R}, then the solution given initial datum $u_I(x)$ is $u(x, t) \equiv u_I(x)$ a.e.

- The solution doesn’t evolve in time.
Proposition (KLMV 2018)

Let \(u_I \in L^1_{loc}(\mathbb{R}^n) \) be radial, \(u \) be the solution emanating from \(u_I \), and \(J \subset \mathbb{R}^n \) be an annulus or ball centered at 0 such that \(u_I(J) = \{ c \} \) for some constant \(c \in \mathbb{R} \). Then there is a continuous function, \(c(t) : \mathbb{R} \to \mathbb{R} \), such that \(u(J, t) = \{ c(t) \} \).
Results on 1D Data

Pictorial Example: Constancy and Infinite Stabilization Time
Results on 1D Data

Pictorial Example: Constancy and Infinite Stabilization Time

\[u \]

\[r \]
Results on 1D Data

Local Monotonicity

Theorem (KLMV 2018)

Let $u_I \in L^1_{\text{loc}}(\mathbb{R})$, $I \subset \mathbb{R}$ be an open interval such that $u_I(I)$ has no local or global extrema, $J \subset \subset I$, and u be the solution emanating from u_I. Then there is a $T \in \mathbb{R}$ with $(u|_{J \times (0,T)})(x,t) \equiv u_I(x)$.
Results on 1D Data

Pictorial Example
Proposition (KLMV 2018)

Let $0 \leq u_1 \in L_{loc}^1(\mathbb{R})$ and $u(x, t) : \mathbb{R} \times (0, T) \to \mathbb{R}$ be the entropy solution emanating from u_1. Then the extinction time of u_1 is finite if and only if $u_1 \in L^1(\mathbb{R})$, in which case the following formula holds:

$$
\int_{\mathbb{R}} u(x, t) \, dx = \int_{\mathbb{R}} u_1(x) \, dx - 2t \quad \text{for all } 0 \leq t \leq T
$$

- Tracks the loss of mass
- Good theoretical tool to analyze higher dimensional data
Theorem (KLMV 2018)

Suppose \(u \in L^1_{loc}(\mathbb{R}) \) be bounded with compact support. Let \(u^+_I = \max(u_I, 0) \) and \(u^-_I = |\min(u_I, 0)| \). Next, let \(R_n = [x_n, x_{n+1}] \). Finally, denote \(M = \frac{1}{2} \max(\int_{R_1} |u_I| \, dx, \int_{R_2} |u_I| \, dx, \ldots, \int_{R_m} |u_I| \, dx) \). Then, the extinction time of \(u \), \(T \), is governed by the inequality

\[
M \leq T \leq \frac{1}{2} \max\left(\int (u^+_I), \int (u^-_I) \right).
\]
Extinction Time
A Pictorial Example

\[u_0 \]

\[x \]
Extinction Time

A Pictorial Example
Proposition (HKS 2016, KLMV 2018)

Suppose that $u(x, t) : \mathbb{R}^N \times (0, \infty) \rightarrow \mathbb{R}$ is an entropy solution with initial datum $u_I \in L^1_{\text{loc}}(\mathbb{R}^N)$. Then for any $M \in \mathbb{N}$, $\tilde{u}(x, y, t) := u(x, t)$, \tilde{u} is an entropy solution with initial datum $\tilde{u}_I \in L^1_{\text{loc}}(\mathbb{R}^N \times \mathbb{R}^M)$ and $\tilde{u}_I(x, y) := u_I(x)$.
Sheets

Visual Example

![3D Visual Example](image-url)
Corollary (KLMV 2018)

Let $u_I \in L^1_{loc}(\mathbb{R}^n)$ be radial, $f(|x|) := u_I(x)$, u be the solution emanating from u_I, and T be the extinction time of u which may be infinite. Let $f^+ := \max(0, f)$, $T^+ := \frac{1}{2} \int_{\mathbb{R}} f^+ \, dx$, $f^- := |\min(0, f)|$, and $T^- := \frac{1}{2} \int_{\mathbb{R}} f^- \, dx$. Then:

$$T \leq \max(T^+, T^-)$$
References

We would like to thank Dr. Marianne Korten, Kansas State University Department of Mathematics, the National Science Foundation, and the organizers and participants of the SUMaR 2018 program.