Legendrian Weaves

Every knot is a braid closure (Alexander '23), albeit in many ways.

So begin by looking in a nbhd of S^1. (Context counterpart: $J'(S^1)$)

Weinstein's nbhd from (ct'd): local model \mathbb{R}^{2n+1}, near Legendrian $J'(x)$

$J'(S^1) = T^*S^1 \times \mathbb{R} \quad \alpha = dz - y\,dx \quad \lambda^1 = 0$ Legendrian - e.g. $0 \mapsto (0, df(0)), (0, \epsilon)$

$N = 2$ - strand braid

\leftarrow more efficient encoding

transpositions T_i generate S_N
So encode Legendrian surfaces in \(J^+(\mathbb{S}^2) \) by planar diagrams encoding crossing loci of (cusp-less) fronts.

![Planar pieces diagram](image)

Def. An \(N \)-graph \(G \) is a collection \(\{ G_1, G_2, \ldots, G_m \} \) of embedded cubic graphs on \(S \) s.t. \(G_i \) intersects \(G_j \) only at vertices, whereupon edges interlace.

Def. A Legendrian curve \(\Lambda(\mathbb{S}^2) \) is the Legendrian surface, up to \(3d \) isotopy, described by an \(N \)-graph \(G \) up to planar isotopy. N.B. 2-graph \(\leftrightarrow \) cubic graph.

Say \(\Lambda \subset J^+(\mathbb{S}^2) \). Define cat. \(C(\Lambda) := \text{Sh}^*(\text{Shx}(\mathbb{A})) \), moduli stack. \(\mu(\Lambda) = 0 \).
1d: Reidemeister III encoded as

2d: Movie of $\mathcal{R}m \circ \mathcal{R}m^{-1}$:

Move a plane:

G

\rightarrow

G

\sim

G

N.B. V, MV, V_λ

\begin{align*}
V_2 = V_1, & \iff \text{GKS: isotopy of } V_1, V_2 \text{ equiv} \\
V_2 = V_1, & \iff \text{branch point of proj.}
\end{align*}
Ex: 2-graphs (cube, planar)

\[g = 2 \]

\[\frac{\# P_1}{\# F_1} = q + 1 = 3^2 = * \text{ colors for } \mathbb{Z}/3 \text{ are } \]

\[* P_{\mathbb{Z}/3} = Q (g - 1)(g - 2) \]

\[M = \frac{P_g (k)}{Q (g - 1)(g - 2)} \]

Moduli Space, M

12:

\[V_2 = V \]

22:

\[V_2 = V \]

\[\text{N.B.} \quad V, V', V'' \]

\[r = 0 \]

\[\text{A flag for each region. Condition on } k \text{'s} \]

\[\text{Transversality } = \text{ open Bertlmann type} \]

\[/P(1) \]

\[\text{stack, but usually with} \]

\[\text{possible monodromy if non-simp. conn.} \]

Planar Structures

2-graphs

\[[0-1] \]

\[\text{chromatic algebra embeds into } \tau \]

\[\text{correspondence} \]

\[\text{maps to cohomology} \]

\[\text{of Bertlmann type (open)} \]

\[\text{Severel calculus [E-W]} \]

3-graphs ??

Leads ?

No, seems now:

"verhilding algebra. ??"
Topology

one-cycle \[\bullet \wedge \bullet = +1 \]

\[\begin{matrix}
\Delta \quad \text{branches } & \quad \text{one-cycle} & \quad \text{one-cycle}
\end{matrix} \]

(some tree)

\[\begin{matrix}
\Rightarrow \quad \xrightarrow{\text{connect}} & \quad \xrightarrow{\text{sum}} & \quad \xrightarrow{\text{mutation, flip}}
\end{matrix} \]

\[Y \Rightarrow Y \quad \text{(connect sum)} \]

Fillings & Clusters

Filling \(\Rightarrow \) cluster chart

\[\lambda \subset (\mathbb{C}^2)^* \prec \mu \subset \mathbb{C} \]

L: \(\text{coor transform} \rightarrow \text{nonisotopic legs} \)

Surface bounds (2,n) knot

Lagrangian projection goes as Lag filling, embedded if no Reeb chords.

\[\text{(ideal triangulations of n-gon: } \mathbb{C} \text{n)} \]

Mutation = Lag surgery:

\[\xrightarrow{\text{sym}} \]

N.B. It gets more complicated!
N-triangulations, spectral networks

\[\text{monodromy} = \text{cluster word} = \text{triple product of pluggs} \]

Thin: Infinitely many non-isotopic fillings.

* Could not do with 2-graphs

Idea: realize mutations on Lagrangian-filling charts & exploit cluster theory.

Dylan Thurston provided this seq.

\[\Delta : \begin{array}{c}
1 \\
6 \\
3 \\
5
\end{array} \]

\[\text{Pot } \Delta = \mu_6 \mu_5 \mu_3 \mu_2 \mu_1 \]

\[\Delta^n : \begin{array}{c}
1 \\
3 \\
4 \\
5
\end{array} \]

Distinct cluster charts.

Things get complicated quickly!

\[\Delta \downarrow \text{ local mutation rules} \]

Bryer Knot:

\[(3, 6) \]

\[\cdots \text{ and concordances} \]