Generalizing the Lucas-Lehmer Primality Test

Alyson Deines *

May 8, 2007

1 Lucas-Lehmer Test for Mersenne Primes

1.1 Background

Take \(P, Q \in \mathbb{Z} \setminus 0 \). Consider the quadratic polynomial \(x^2 - Px + Q \). Then take the discriminant \(D \) to be the square-free part of \(c^2 D = P^2 - Q \). The roots of the polynomial are \(a, \bar{a} = \frac{P \pm \sqrt{D}}{2} \). So we have the following identities:

\[
\begin{align*}
a + \bar{a} &= P \\
a\bar{a} &= Q \\
a - \bar{a} &= c^2 D.
\end{align*}
\]

Define the Lucas sequences \(U, V \) to be

\[
U_n(P, Q) = \frac{a^n - \bar{a}^n}{a - \bar{a}}
\]

and

\[
V_n(P, Q) = a^n + \bar{a}^n
\]

*the author was advised by Dr. Todd Cochrane and supported by the Goldwater and Clare Booth Luce scholarships
for $n \geq 0$. For simplicity, P, Q will be assumed and the Lucas sequences will be denoted by U_n and V_n. Note $U_0 = 0, U_1 = 1, V_0 = 2, \text{ and } V_1 = P$.

The following identities will be used in the paper. Their proofs are in the appendix.

1. $U_{p^n-1(p-(\frac{P}{P^n}) \equiv 0 (\text{mod } p^n)}$ if $GDC(2QcD, p) = 1$.

2. $V_{2n} = V_n^2 - 2Q^n$

3. $2V_{m+n} = V_m V_n + c^2 DU_m V_n$

4. $V_P \equiv P (\text{mod } p)$

5. $U_P \equiv (\frac{P}{p} (\text{mod } p)$

6. $V_n^2 - c^2 DU_n^2 \equiv 4Q^n$

(7) $U_n = U_{\frac{n}{2}} V_{\frac{n}{2}}$

(8) If $n, k \geq 1$ then $U_n \mid U_{kn}$

1.2 Theorem 1

Theorem 1. [2, Riesel] Suppose $N + 1 = \Pi_{j=1}^{n} q_j^\alpha_j$ with all q_j's distinct primes. If a Lucas sequence U_m satisfying $GDC(2QcD, N) = 1$ can be found such that $GDC(U_{N+1}, N) = 1$ for any $j = 1, 2, ..., n$ and N divides U_{N+1}, then N is prime.

Proof: Consider any prime factor p of N. Then $GDC(U_{N+1}, p) = 1$ for all $j = 1, 2, ..., n$. Additionally p divides U_{N+1}. Then $U_{N+1} = \frac{a^{N+1} - a^{-N+1}}{a - \bar{a}} \equiv 0 (\text{mod } p)$. This implies $a^{N+1} - \bar{a}^{N+1} \equiv 0 (\text{mod } p)$, or, as $a\bar{a} = Q$ then a and \bar{a} are coprime to N and thus coprime to p. Then we have
\(a^{N+1} \equiv (a^{N+1})^{N+1} \equiv 1 \pmod{p}\). Now, take \(d\) to be the smallest integer such that \(U_d \equiv 0 \pmod{N}\). Then \(U_d \equiv 0 \pmod{p}\) and as above \((a^{N+1})^d \equiv 1 \pmod{p}\). As \(d\) is the smallest such integer, \(d \mid N + 1\). However, since \(p\) does not divide \(U_j \forall j = 1, 2, \ldots, n\), then \(a^{q_j} \equiv (a^{N+1})^{q_j} \equiv 1 \pmod{p}\), which implies that \(d\) does not divide \(N+1\), thus \(d \mid N + 1\) but \(d\) does not divide \((N + 1)q_j\) for all \(j = 1, 2, \ldots, n\), hence \(q_j \mid d\) so \(N + 1 \mid d\) and we have \(N + 1 = d\).

Suppose \(N = \prod p_i^{\alpha_i}\) and \(\text{GCD}(2QcD, N) = 1\). Then by (1) we have \(U_{p_i^{\alpha_i}} = (p_i - D) \equiv 0 \pmod{p_i^{\alpha_i}}\). Using the fact that all the subscripts satisfying precisely one of the congruences \(U_n \equiv 0 \pmod{p_i^{\alpha_i}}\) constitute the nonnegative part of a module, the subscripts satisfying all the congruencies also form the nonnegative part of a module. This module has a generator, which is the least common multiple of the generators of all the individual modules. Thus \(U_m \equiv 0 \pmod{N}\) where \(m = \text{LCM} [p_i^{\alpha_i} (p_i - D) / p_i]\).

Since \(\text{GCD}(2QcD, N) = 1\), we have that all \(p_i\)'s are odd and thus all \(p_i - D / p_i\) are even. This in turn leads to the inequality \(m = 2\text{LCM} [p_i^{\alpha_i} (p_i - D / p_i)] \leq 2\prod p_i^{1 - 1 / p_i} p_i^{\alpha_i} \leq 2N \prod p_i^{1 / 2} (1 + \frac{1}{p_i})\). Define \(T = 2N \prod p_i^{1 / 2} (1 + \frac{1}{p_i})\). Now there are two cases to consider, first, where \(N\) is a prime power and second, \(N\) contains at least two distinct prime factors.

Case 1. Suppose \(N\) is a prime power, then \(N = p_1^{\alpha_1}\), where \(\alpha_1 \geq 2\). In this case we can calculate the exact value of \(m\), \(m = N(1 + \frac{1}{p_1}) = p_1^{\alpha_1} \pm p_1^{\alpha_1 - 1}\). Then we have \(p_1^{\alpha_1} \pm p_1^{\alpha_1 - 1} \neq N + 1\).

Case 2. If \(N\) contains at least two distinct prime factors, \(p_1\) and \(p_2\), we have \(T = N(1 + \frac{1}{p_1})(1 + \frac{1}{p_2}) \prod p_i^{1 / 2} (1 + \frac{1}{p_i}) \leq N(1 + \frac{1}{3})(1 + \frac{1}{3}) = 0.8N < N + 1\). Thus, if \(N\) is a composite number, \(d \neq N + 1\). However, as the value for \(d\) was previously seen to be \(d = N + 1\), \(N\) must be prime.

1.3 Primality Test for Mersenne Numbers

Theorem [1, Ribenboim] Let \(P = 2\) and \(Q = 4\). Consider the associate Lucas sequences \((U_m)_{m \geq 0}\), \((V_m)_{m \geq 0}\) which have discriminant \(D = 3\) (as \(c^2D = 12\)). Then for \(N = M_q\), where \(M_q = 2^q - 1\), \(N\) is prime if and only if \(N\) divides \(V_{N+1}^{N+1}\).

Proof: Let \(N\) be a prime. By (2)
\[V_{N+1}^{2} = V_{N+1}^{N+1} + 2Q_{N+1}^{N+1} \]
\[V_{N+1} = 2(-2)(-2)^{N-1} \]
\[\equiv V_{N+1} + 4 - \frac{2}{N} \]
\[\equiv V_{N+1} + 4 \pmod{N}. \]

Note that \(-\frac{2}{N} = 1 \) as \(N \equiv 3 \pmod{4} \) and \(N \equiv 7 \pmod{8} \), thus \(-\frac{2}{N} = -1 \). Thus to show \(N \) divides \(V_{N+1} \) we need to show \(V_{N+1} \equiv -4 \pmod{N} \). By (3),

\[2V_{N+1} = V_NV_1 + c^2DU_NU_1 = 2V_N + 12U_N \]

By (4)

\[V_N \equiv P \pmod{N} \]

and by (5)

\[U_N \equiv \frac{D}{N} \pmod{N} \]

Thus we arrive at \(V_{N+1} \equiv V_N + 6U_N \equiv 2 + 6\frac{3}{N} \equiv 2 - 6 \equiv -4 \pmod{N} \).

Now, showing the other direction, assume \(N \) divides \(V_{N+1} \). By (7) \(U_{N+1} = U_{\frac{N+1}{2}}V_{\frac{N+1}{2}} \) which implies that \(N \) divides \(U_{N+1} \). By (6) \(V_{\frac{N+1}{2}}^2 - 12U_{\frac{N+1}{2}} = 4(-2)^{\frac{N+1}{2}} \). As \(N \) does not divide \(4(-2)^{\frac{N+1}{2}} \), \(N \) does not divide \(12U_{\frac{N+1}{2}} \), thus \(\gcd(N, U_{\frac{N+1}{2}}) = 1 \). Since \(\gcd(2QcD, N) = 1 \) all criteria are met for Theorem 1 and hence \(N \) is a prime.

1.4 Actual Test

Theorem [1, Ribenboim] The number \(M_n = 2^n - 1 \) is prime if and only if \(M_n \) divides \(S_{n-2} \) where \(S_0 = 4 \) and \(S_{k+1} = S_k^2 - 2 \).

Proof: First notice that \(\frac{V_2}{2} = 4 = S_0 \). Now use induction. Assume \(S_{k-1} = \frac{V_{2k}}{2^{2k-1}} \). Then

\[S_k = S_{k-1}^2 - 2 = \frac{V_{2k}^2}{2^{2k}} - 2 = \frac{V_{2k+1} + 2Q^{2k}}{2^{2k}} - \frac{2^{2k+1}}{2^{2k}} = \frac{V_{2k+1}}{2^{2k}}. \]

Thus from the Primality Test for Mersenne Numbers, the above statement holds.

Notice that Theorem 1 does not work well if you wish to generalize this primality test. To use Theorem 1 for \(N = h2^n - 1 \) the Lucas sequence \(U_{\frac{N+1}{q_i}} \) must be examined for all \(q_i \) where \(q_i \) are factors of \(h \). This leads to the necessity of the following theorem for the generalization of the Lucas-Lehmer primality test.
2 Generalized Lucas-Lehmer Primality Test

2.1 Theorem 2

Theorem 2: [2, Riesel] Suppose \(N + 1 = RF = R \prod q_i^{e_i} \) with all \(q_i \)'s distinct primes, \(R < F \), and \(\text{GCD}(R, F) = 1 \). If a Lucas sequence \(U_m \) with \(\text{GCD}(2QcD, N) = 1 \) exists satisfying \(\text{GCD}(U_{N+1}, N) = 1 \) and \(U_{N+1} \equiv 0 \pmod N \), then \(N \) is prime.

Proof: Consider a possible prime factor of \(N \), \(p \). If we can find a Lucas sequence \(U_m \) with \(\text{GCD}(2QcD, N) = 1 \) such that \(\text{GCD}(U_{N+1}, N) = 1 \), then \(\text{GCD}(U_{N+1}, p) = 1 \) for all \(i \). Further, if \(U_{N+1} \equiv 0 \pmod N \) then \(U_{N+1} \equiv 0 \pmod p \). Take \(d \) to be the smallest subscript such that \(U_d \equiv 0 \pmod p \). From \(U_{N+1} \equiv 0 \pmod p \) we have \(a^{N+1} \equiv a^{N+1} \pmod p \), which in turn yields \((a \bar{a})^{N+1} \equiv 1 \pmod p \). Similarly, \((a \bar{a})^d \equiv 1 \pmod p \). Then \(d \) divides \(N+1 \). As \(p \) does not divide \(U_{N+1} \) for all \(i \), \((a \bar{a})^{N+1} \) is not congruent to \(1 \pmod p \). Hence \(d \) does not divide \(\frac{N+1}{q_i} \) for any \(q_i \), so \(F \) divides \(d \). However, by (1) \(d \) divides \(p - \frac{D}{p} \), namely, \(d \) divides \(p + 1 \), so \(F \) divides \(p + 1 \) and we can say \(p \geq F + 1 \). If \(p \geq F + 1 \), then \(F + 1 > \sqrt{N} \) and \(N \) is prime. If \(p = F - 1 \) this is not the case, so consider \(N = RF - 1 = R(p + 1) - 1 = Rp + R - 1 \equiv 0 \pmod p \). This implies that \(R \equiv 1 \pmod p \). However, since \(0 < R < F = p + 1 \), if \(R \equiv 1 \pmod p \), then \(R = 1 \), which implies that \(N = p \), i.e. \(N \) is a prime.

Notice with this test, it is easy to test numbers of the form \(h = R \), and \(2^n = F \), where \(h < 2^n \). However, when \(h > 2^n \), it becomes difficult to calculate the necessary Lucas sequences. Another problem with this test, is that in many cases, such as \(Q = 1 \), \(\left(\frac{D}{p} \right) = -1 \), then \(U_{N+1} \equiv 0 \pmod p \). So one solution is to insert new elements into the sequence to double the index.

2.2 Generalized Primality Test (O. Körner, Ulm, Germany)

Theorem: [2, Riesel] If \(h \) is odd and \(2^n > 4h \), then \(N = h2^n - 1 \) is prime if there exists a Lucas sequence \(V_m \) with \(\text{GCD}(QcD, N) = 1 \) such that \(V_{N+1} \equiv 0 \pmod N \).

Proof: Suppose \(N \) is composite and \(p \) is the smallest prime factor of \(N \). Then \(p \leq \sqrt{N} \). If \(U_d \equiv 0 \pmod N \) for \(d \), where \(d \) is defined to be the smallest subscript such that \(U_d \equiv 0 \pmod N \). Then
from (8), all \(m \) with \(U_m \equiv 0 \pmod{N} \) are multiples of \(d \). Since \(U_{N+1}^{2} = V_{N+1}^{2} U_{N+1} \equiv 0 \pmod{N} \), \(d \) divides \(\frac{N+1}{2} \).

Notice that \(U_{N+1}^{2} \) is not congruent to 0 \(\pmod{N} \). If for some \(m \) \(U_m \) and \(V_m \) are both congruent to 0 \(\pmod{N} \), then \((a - \overline{a})U_m \equiv V_m \equiv 0 \pmod{N}\). This implies that \(a^m - \overline{a}^m = (a^m + \overline{a}^m) \equiv 2a^m \) and \(-2\pi^m \equiv 0 \pmod{N}\), thus \(a^m, \overline{a}^m \equiv 0 \pmod{N}\), and moreover, there exists a prime \(p \), \(p \) a factor of \(N \) such that \(p \) divides \((a - \overline{a})^2 = c^2D\). This is a contradiction as \(\gcd(QcD, N) = 1\).

Applying the previous reasoning to \(m = \frac{N+1}{4} \), we find that \(d \) does not divide \(\frac{N+1}{4} = h2^n \). Thus \(2^{n-1} \) divides \(d \). Now, notice that \(U_{p^2}^2 \equiv 0 \pmod{p} \) by (1), so \(d \) divides \(p - \frac{p}{p} \), which implies \(2^{n-1} \) divides \(p - \frac{p}{p} \). In particular \(p \equiv \frac{p}{p} \pmod{2^{n-1}} \) and \(p \geq 2^{n-1} - 1 \).

The case \(p = 2^{n-1} - 1 \) can be excluded as this implies that \(N = h2^n - 1 = 2h(p+1) - 1 \equiv 2h - 1 \pmod{p} \) and \(2h - 1 = p \). As \(p^2 \geq (2^{n-1})^2 = 2^{n(2n-2)} > h2^n = N + 1 \), this contradicts the assumption that \(p \) is the smallest prime factor of \(N \). Thus \(N \) is prime.

2.3 Lucas’ Generalized Primality Test when 3 does not divide \(h \)

Theorem: [2, Riesel] Suppose that \(h \) is an odd integer, \(2^n > h \) and neither \(N = h2^n - 1 \) nor \(h \) is divisible by \(3 \). Then \(N \) is a prime if and only if \(v_{n-2} \equiv 0 \pmod{N} \), where \(v_k = v_{k-1}^2 - 2 \) and \(v_0 = (2 + \sqrt{3})^h + (2 - \sqrt{3})^h \).

Proof: Take \(a = 2 + \sqrt{3} \) and \(\overline{a} = 2 - \sqrt{3} \). Then \(P = 4, Q = 1, c^2D = 12, D = 3, \) and \(\frac{P}{D} = -1 \). Take \(\sqrt{a} = \frac{\sqrt{3}+1}{2}, \overline{\sqrt{a}} = \frac{\sqrt{3}-1}{2} \) and create the sequence \(V_k' = (\frac{\sqrt{3}+1}{2})^k + (\frac{\sqrt{3}-1}{2})^k \). Then \(P' = \sqrt{6} \) and \(Q' = 1 \). Then for the Lucas sequence \(V_k \) defined by \(a \) and \(\overline{a} \), \(V_k = V_{2k} = V_k^2 - 2Q^k = V_k^2 - 2 \). Then for \(v_k = V_{h2^k}, v_k = v_{k-1}^2 - 2 \) holds. Thus \(v_{n-2} \equiv 0 \pmod{N} \) if and only if \(V_{2^{n-1}} \equiv V_{h2^{n-2}} \equiv V_{N+1} \equiv 0 \pmod{N} \). Hence, by the Generalized Primality Test of Korner, \(N \) is prime.

Notice that the above test can be used for Mersenne numbers when \(h = 1 \), but it utilizes a different sequence. Even in the case of the first test, the Test for Mersenne primes, the sequence is not unique, other sequences, i.e. other \(P \) and \(Q \) can be found that satisfy the conditions required.
3 Testing Numbers of the Form $2^n3^m - 1$

The problem with testing numbers where $3 \mid h$ is that there is no one recursive sequence $(v)_n$ that we can use to check all cases. Further complicating issues $(\frac{D}{N})$ now depends on both h and n. Thus there is no consistent D such that $(\frac{D}{N}) = -1$ for all N which means that it is difficult and computationally tedious to find an appropriate Lucas sequence in the first place. However, Riesel there is a test in [2, Riesel] specifically for when $3 \mid h$.

3.1 Theorem 3, $3 \mid h$

Theorem: [2, Riesel] Suppose h is an odd integer and that $2^n > 4h$. Then $N = h2^n - 1$ is prime if and only if $v_{n-2} \equiv 0 \pmod{N}$, where $v_s = v_{s-1}^2 - 2$ with $v_0 = a^h + a^{-h}$, and $\text{GCD}(N, (a-a^{-1})^2) = 1$, where a is a unit of $\mathbb{Q}(\sqrt{D})$ of the form

$$a = \frac{(k + l\sqrt{D})^2}{r}$$

where

$$\left(\frac{D}{N}\right) = -1$$

and

$$\frac{k^2 - l^2D}{r} \left(\frac{r}{N}\right) = -1.$$

For $n \equiv m + 1 \pmod{4}$ this test can be used for numbers of the from $N = 2^n3^m - 1$ with one consistent sequences and discriminant D. Additionally, examining many of the other cases for n not congruent to $m + 1 \pmod{4}$ shows that N cannot be prime.

3.2 Primality Test for $N = 2^n3^m - 1$

Theorem: Take $h = 3^m$ to get $N = 2^n3^m - 1$. Then when $D = 5$, $Q = 1$ and $n \equiv m + 1 \pmod{4}$, the previous theorem, Theorem 3, is satisfied.

Proof: If $D = 5$, $Q = 1$ we find that $P = 3$ as $P^2 - 4Q = D$. Then $a, \bar{a} = \frac{-3 \pm \sqrt{5}}{2}$. Notice $\bar{a} = \frac{-3 - \sqrt{5}}{2} = a^{-1}$. We additionally find that for $k = -1, l = 1, r = -4$ the following equations are satisfied:

$$a = \frac{(k + l\sqrt{D})^2}{r}$$

and

$$\frac{k^2 - l^2D}{r} \left(\frac{r}{N}\right) = -1.$$
Notice that \(\left(\frac{n!}{N!} \right) = (-1)^{\frac{2^n(n-1)}{2}} = (-1)^{2^n-1} = -1. \) This implies that \(\left(\frac{a}{N} \right) \left(\frac{b}{N} \right) = (-1)(-1) = -1. \)

Now the only item left to check is that \(\left(\frac{a}{N} \right) = -1, \) when this occurs all the criteria for the test are satisfied. As \(5 \equiv 1 \pmod{4} \) we have \(\left(\frac{5}{N} \right) = \left(\frac{N}{5} \right). \) This simplifies the problem to finding which values \(\pmod{5} \) give \(\left(\frac{N}{5} \right) = -1, \) namely, for what values is \(N^2 \equiv -1 \pmod{5} \). Thus we want \(N \equiv 2, 3 \pmod{5} \), which implies we need to find \(n, m \) such that \(2^n 3^m \equiv 3, 4 \pmod{5} \). Examining \(2^n \) and \(3^m \) individually \(\pmod{5} \), the following relation appears \(2^{1+4k} \equiv 2, 2^{2+4k} \equiv 4, 2^{3+4k} \equiv 3, 2^{4k} \equiv 1 \) and \(3^{1+4k} \equiv 3, 3^{2+4k} \equiv 4, 3^{3+4k} \equiv 2, 3^{4k} \equiv 1 \) for some integer \(k \). Thus \(2^n 3^m \equiv 3 \pmod{5} \) when \(n \equiv m + 1 \pmod{4} \) and \(2^n 3^m \equiv 4 \pmod{5} \) when \(n \equiv m + 2 \pmod{4} \).

This allows us to use Theorem 3 to test \(N = 2^n 3^m - 1 \) with \(v_0 = \frac{-3+\sqrt{5}}{2}h + \frac{-3-\sqrt{5}}{2}h. \) Notice that \(v_0 \) can be calculated \(\pmod{N} \) as above but with a different relation \(V_{m+1} = (a+n)V_m - aV_{m-1} = PV_m - QV_{m-1} = 3V_m - V_{m-1}. \)

Now examining the cases where \(2^n 3^m \equiv 0, 1, 2 \pmod{5} \). If \(2^n 3^m \equiv 1, \) then \(5 \mid N, \) so \(N \) is not prime. This case occurs when \(n \equiv m \pmod{4} \). As \(\mathbb{F}_5 \) is a field, and thus has no zero divisors, \(2^n 3^m \equiv 0 \) never occurs. This leaves only the case \(2^n 3^m \equiv 2 \pmod{5} \), which occurs when \(n \equiv m - 1 \pmod{4} \). Future work could be finding a test for this situation.

Notice however, that this test does not allow us to test primes where \(4h > 2^n \). With the case of \(N = 2^n 3^m - 1 \) we can accomplish testing of \(N \) when \(3^m > 2^n \) by reversing the rolls of \(R \) and \(F \) in Theorem 2. Here we need to test that \(N \mid U_{N+1} \) and that \(N \) does not divide \(U_{N+1}. \) This is equivalent to the condition \(N \mid V_{N+1}^2 - Q_{N+1}^{N+1}. \) First note that \(U_{N+1} = U_{N+1}^2 (V_{N+1}^2 - Q_{N+1}^{N+1}). \) If \(N \mid V_{N+1}^2 - Q_{N+1}^{N+1}, \) then as \(V_{N+1}^2 - DU_{N+1} = 4Q_{N+1}^{N+1}, \) this simplifies to \(DU_{N+1} = -3Q_{N+1}^{N+1} \pmod{N}. \) As \(\text{GCD}(2QcD, N) = 1, \) \(N \) does not divide \(U_{N+1} \) but \(N \mid U_{N+1}. \) As \(V_{2k} = V_{2k-1}^2 - 2Q_{2k-1}^{2k-1}, \) we can easily calculate \(V_{2n}. \) From here note that \(V_{3k+2n} = V_{3k+2n}^2 (V_{3k+2n}^2 - 3Q_{3k+2n}^{2k+1}). \) So we can easily calculate \(V_{3m-12n} = V_{3m-12n}^2. \) Also note that this test is not restricted to the previous cases of \(n \equiv m + 1, n \equiv m + 2 \pmod{4} \) and though slower, could be used to test all numbers \(N \) where \(2^n > 3^m \) as well, however, as noted above, we wouldn't be able to use \(Q = 1 \) and \(\left(\frac{b}{N} \right) = -1 \) as that results in \(U_{N+1} \equiv 0 \pmod{N}. \)
4 Appendix

Here are the proofs of the following:

(1) $U_{p^{n-1}(p-(\frac{p}{p^r}))} \equiv 0 \pmod{p^n}$ if $GDC(2QcD, p) = 1$.

(2) $V_{2n} = V_n^2 - 2Q^n$

(3) $2V_{m+n} = V_mV_n + c^2DU_mU_n$

(4) $V_p \equiv P \pmod{p}$

(5) $U_p \equiv (\frac{D}{p}) \pmod{p}$

(6) $V_n^2 - c^2DU_n^2 = 4Q^n$

(7) $U_{2n} = U_nV_n$

(8) If $n, k \geq 1$ then $U_k \mid U_{kn}$

Proof of (1)

By definition $U_n = \frac{a^n - \overline{a}^n}{a - \overline{a}}$. As a is in $\mathbb{Q}(\sqrt{D})$, we can write a as $a = r + s\sqrt{D}$ for some $r, s \in \mathbb{Q}(\sqrt{D})$. Note that as $GDC(2QcD, p) = 1$ and $Q = a\overline{a}$, $GDC(a, p) = 1$. Thus $a^n = (r + s\sqrt{D})^n = r^n + s^nD^n \equiv r^n + s^n(\frac{D}{p})\sqrt{D} \equiv r^n + s^n(\frac{D}{p})\sqrt{D} \pmod{p}$. This implies that $a^n \equiv a \pmod{p}$ if $(\frac{D}{p}) = 1$ and $a^n \equiv \overline{a} \pmod{p}$ if $(\frac{D}{p}) = -1$.

Then for $(\frac{D}{p}) = -1$ we have that $a^{p+1} \equiv a^pa \equiv a\overline{a} \pmod{p}$. Therefore $a^{p^{n-1}(p+1)} = (a^{p+1})^{p^{n-1}} = (a\overline{a} + kp)^{p^{n-1}} \equiv (a\overline{a})^{p^{n-1}} \pmod{p^n}$ as p^n divides every coefficient of $(a\overline{a} + kp)^{p^{n-1}}$ except the first coefficient, i.e. the coefficient of $a\overline{a}$. Thus $U_{p^{n-1}(p-(\frac{p}{p^r}))} \equiv a^{p^{n-1}(p-(\frac{p}{p^r}))} - a^{p^{n-1}(p-(\frac{p}{p^r}))} \equiv a\overline{a} - a\overline{a} \equiv 0 \pmod{p^n}$.

9
For \(\frac{\binom{a}{p}}{p} = 1 \) and \(n > 2 \), \(a^{p^n} = (a^p)^{p^{n-1}} = (a + kp)^{p^{n-1}} \equiv a^{p^{n-1}} \pmod{p^n} \) thus \(a^{p^n} = ap^{n-1} \equiv a^{p^{n-1}}(p-1) \equiv 1 \pmod{p} \) and \(a^{p^{n-1}}(p-\binom{a}{p}) - a^{p^{n-1}}(p-\binom{a}{p}) \equiv 0 \pmod{p} \).

Proof of (2)

\[V_{2n} = a^{2n} + \bar{a}^{2n} = a^{2n} + 2(a\bar{a})^n + \bar{a}^{2n} - 2(a\bar{a})^n = (a^n + \bar{a}^n)^2 - 2(a\bar{a})^n = V_n^2 - 2Q^n. \]

Proof of (3)

\[2V_{m+n} = 2(a^{m+n} + \bar{a}^{m+n}) = 2a^m a^n + 2\bar{a}^m \bar{a}^n = (a^m + \bar{a}^m)(a^n + \bar{a}^n) + (a - \bar{a}) \frac{(a^n - \bar{a}^n)(a^n - \bar{a}^n)}{(a - \bar{a})(a - \bar{a})} = V_m V_n + DU_m U_n. \]

Proof of (4)

\[V_p = a^p + \bar{a}^p \equiv (a + \bar{a})^p \equiv P^p \equiv P \pmod{p}. \]

Proof of (5)

\[U_p = \frac{a^p - \bar{a}^p}{a - \bar{a}} \equiv \frac{(a - \bar{a})^p}{a - \bar{a}} \equiv (a - \bar{a})^{p-1} \equiv (e^2D)^{\frac{p-1}{2}} \equiv \binom{a}{p} \pmod{p}. \]

Proof of (6)

\[V_n^2 - e^2DU_n^2 = (a^n + \bar{a}^n)^2 - (a - \bar{a})^2 \frac{(a^n - \bar{a}^n)^2}{(a - \bar{a})^2} = 4a^n \bar{a}^n = 4Q^n. \]

Proof of (7)

\[U_{2n} = \frac{a^{2n} - \bar{a}^{2n}}{a - \bar{a}} = \frac{(a^n - \bar{a}^n)(a^n + \bar{a}^n)}{a - \bar{a}} = U_n V_n. \]

Proof of (8)
First the following identity must be shown:

\[U_{m+n} = U_m U_n - Q^n U_{m-n} \]

\[U_{m+n} = \frac{a^{m+n} - \overline{a}^{m+n}}{a - \overline{a}} = \frac{(a^m - \overline{a}^m)(a^n + \overline{a}^n)}{a - \overline{a}} - \frac{a^n \overline{a}^n (a^{m-n} - \overline{a}^{m-n})}{a - \overline{a}} = U_m U_n - Q^n U_{m-n}. \]

By (7) \(U_k \mid U_{2k} \). Now, assume \(U_k \mid U_{k(n-1)} \) for all integers up to and including \(n - 1 \). Then from the above identity \(U_{kn} = U_{k+k(n-1)} = U_{k(n-1)} U_k - Q^k U_{k(n-2)} \). As \(U_k \mid U_{k(n-2)} \) and \(U_k \mid U_k \), then \(U_k \mid U_{kn} \).

References

