Title: Maximizing A Class of Functionals over Hyperbolically Convex Functions.

Author: Gerard L Ornas Author: Roger W Barnard Author: Kent Pearce

Abstract: In this talk, we use a method of Barnard, based on Julia Variations to solve an extremal problem for hyperbolically convex functions. A hyperbolically convex function can be viewed as a univalent analytic function sending the unit disk D of the complex plane C into a hyperbolically convex subset of D. A subset of D, call it B, is hyperbolically convex provided the hyperbolic geodesic connecting any two distinct points in B lies entirely in B. We denote by H the class of hyperbolically convex functions normalized by fixing the origin. The extremal problem we solve is maximizing $L f$ over the class H. L is a functional of the form $\Re \left(\Phi \left(\log \frac{f'(z)}{f'(0)} \right) \right)$, with reasonable conditions on Φ. This class includes, by choosing $\Phi = \exp(z)$, the functional $|f'(z)||f'(0)|$. As a result, we achieve a broad generalization of a recent result of Pommerenke, Mejía, and Vasiliev, using an entirely different technique. This technique also shows promise in addressing many problems, including a related open conjecture by Pommerenke et al.