Weak topologies I

(a) E a Banach space, $\phi: E \to \mathbb{R} (\pi E)$ linear. Then

\[\phi \text{ is continuous } \iff \phi: (E, \sigma (E, E^*)) \to \mathbb{R} \text{ continuous.} \]

(b) E, F Banach, $T: E \to F$ linear.

T is continuous $\iff T: (E, \sigma (E, E^*)) \to (F, F^*)$ is continuous.

2. E a Banach space, $(x_n)_{n \in \mathbb{N}} \subseteq E$, $x \in E$.

If $x_n \to x$ then there is a sequence of convex combinations of the x_n that converges strongly to x. (This is Mazur's Theorem.)
3. \(E \) be normed, \((x_n)_{n \in \mathbb{N}} \) in \(E \)

\(x_n \) converges in \(E \) \(\implies \) \(x_n \) converges weakly, and uniformly in \(\varepsilon \) \(\forall \varepsilon \in E' : \| \varepsilon \| = 1 \)

4. \(\varepsilon \) set \(1 < p < \infty \) and, in \(L^p \), \(e^n \) given by

\[(e^n)_k = e^n_k \] - show that

\(e^n \) \(\rightharpoonup \) \(0 \) \(\implies \) \(e^n \to 0 \), \(e^n \geq 0 \)

5. \(1 < p < \infty \), \(\varepsilon^n \), \(\varepsilon \in E^p \). Then

\[\varepsilon^n \to \varepsilon \implies \sup\{\| x^n \|_{L^p} \} \to \sup\{\| x \|_{L^p} \} \]

6. \(1 < p < \infty \), \((\Omega_n, \chi) \in L^p(\mathbb{R}, \mathbb{R}) \)

\(\chi \) then \((\Omega_n \to \chi) \) \(\sup\{\| x \|_{L^p} \} \to 1 \)

\(\int_{0}^{a} (\varepsilon_n(t)) \, dt \to \int_{0}^{a} \chi(t) \, dt \quad \forall \varepsilon \in \mathbb{R}, t \)
b) Show that \(q_n(t) = \sin(n \pi t) \) is \(L^2([0,1]) \) converges weakly to 0, but does not converge strongly to 0.