QUIZ 3

Show your work in detail for full credits.

1. Let matrix $A \in M(m, n)$. If X is a solution to the system $AX = B$.
 (a) What is the number of components of vector X? $= n$
 (b) What is the number of components of vector B? $= m$
 (c) In order to have a solution X to the system $AX = B$, which linear space must B belong to?
 $B \in S_C$, the Column Space.
 (d) If vector X is a solution to above system, suppose $Y \neq 0$ and $Y \in N(A)$, the null space.
 Show that the vector $X + Y$ is another solution to the above system.
 \[A(X + Y) = A + AY = A0 + 0 = A0 = B \]
 So $A(X + Y) = B$ holds, i.e. $X + Y$ is a solution to the given system.
 (e) In order that the system $AX = B$ has at most one solution, what is the $\text{rank}(A)$?
 $\text{rank}(A) \geq n$
 (Because we need $\dim(N(A)) = 0$.
 \[\dim(N(A)) = 0 \]
 \[\dim(V) + \dim(N(A)) = n \]

2. Let $A = \begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 3 & 3 & 8 & 2 \end{bmatrix}$.
 (a) Find independent column vectors of matrix A.
 The pivot columns in $\text{ref}(A)$ are 1st, 2nd, and 3rd columns.
 Two independent columns in A are $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.
 (b) Find a basis of column space S_C.
 Same as the 3 vcts for $\text{ref}(A)$:
 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.
 (c) Find a basis of the row space S_R.
 The pivot columns in $\text{ref}(A)$ (not the A^T):
 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \end{bmatrix}$.
 (d) Find the independent row vectors.
 Perform the transpose matrix,
 \[A^T = \begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & 1 & 1 & 3 \\ 3 & 3 & 8 & 2 \\ 1 & 8 & 1 & 2 \end{bmatrix} \]
 \[\text{ref}(A^T) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
 The 1st three columns of $\text{ref}(A^T)$ are pivots.
 Thus, the 1st three columns of A^T, i.e., the 1st three rows of A are independent,
 $\begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.
(e) Find a basis of the null space $N(A)$.

Let $\text{Aug} = [A | 0] = \begin{bmatrix} 2 & 1 & 3 & 1 & | & 0 \\ 0 & 1 & 2 & 1 & | & 0 \\ 3 & 3 & 8 & 2 & | & 0 \end{bmatrix}$
\[\text{Ref} (\text{Aug}) = \begin{bmatrix} 1 & 0 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 5 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \end{bmatrix} \]

Let $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$.

$(NA), x, y, z$ are pivot variables thus w is a free variable.

\[\begin{align*}
 x + w &= 0 \\
 y + 5w &= 0 \\
 z - 2w &= 0
\end{align*} \]

Solve: $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = w \begin{bmatrix} -1 \\ -5 \\ 2 \\ 1 \end{bmatrix}$

$N(\mathbf{A}) = \text{Span}\left\{ \begin{bmatrix} -1 \\ -5 \\ 2 \\ 1 \end{bmatrix} \right\}$

(f) Let $\mathbf{B} = [1, 2, 3, 4]^T$. Does the system $\mathbf{A}\mathbf{x} = \mathbf{B}$ have solution(s)? If it does, find the solution(s). State the reason, if it doesn't.

Let $\text{Aug} = [A | B] = \begin{bmatrix} 2 & 1 & 3 & 1 & 6 \\ 0 & 1 & 2 & 1 & 3 \\ 3 & 3 & 8 & 2 & 4 \end{bmatrix}$
\[\text{Ref} (\text{Aug}) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 5 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{bmatrix} \]

is inconsistent.

Therefore $\mathbf{A}\mathbf{x} = \mathbf{B}$ has no solution.

(g) Answer the same question as above for $\mathbf{B} = [6, 5, 3, 14]^T$.

Let $\text{Aug} = [A | B] = \begin{bmatrix} 2 & 1 & 3 & 1 & 6 \\ 0 & 1 & 2 & 1 & 3 \\ 3 & 3 & 8 & 2 & 4 \end{bmatrix}$, $\text{Ref} (\text{Aug}) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 5 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix}$

Pivot variables: x, y, z.

Free w, u.

\[\begin{align*}
 x + w &= 1 \\
 y + 5w &= 1 \\
 z - 2w &= 1
\end{align*} \]

Solve: $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ w \\ u \end{bmatrix} = \begin{bmatrix} 1 - w \\ 1 - 5w \\ 1 + 2w \\ w \\ u \end{bmatrix}$

Translation: $\mathbf{v}_0 = \begin{bmatrix} 1 \\ 8 \\ 0 \end{bmatrix}$, Spanning vector: $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

$\mathbf{x} = \begin{bmatrix} 1 \\ 8 \\ 0 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.