Solve the initial value problems

\begin{align*}
\frac{dx}{dt} &= 4x + 3y & x(0) &= 1 \\
\frac{dy}{dt} &= -2x - y & y(0) &= 1 \\
\frac{dx}{dt} &= x & x(0) &= 1 \\
\frac{dy}{dt} &= 2x & y(0) &= 2 \\
\frac{d^2x}{dt^2} &= -2x + y & x(0) &= 1 \\
\frac{dy}{dt} &= -6x + 3y & y(0) &= 1 \\
\frac{dx}{dt} &= 2x + 1y & x(0) &= 1 \\
\frac{dy}{dt} &= -4x - 3y & y(0) &= 1 \\
\frac{dx}{dt} &= -3x + y & x(0) &= -1 \\
\frac{dy}{dt} &= y & y(0) &= 2 \\
\frac{d^2x}{dt^2} &= 5x + 4y & x(0) &= 1 \\
\frac{dy}{dt} &= -2x - y & y(0) &= 1
\end{align*}

We studied numerical methods, Euler’s method and the improved Euler’s method, for approximating the solutions of first order differential equations. The same techniques, with the obvious modifications, work for first order systems as well. First we discuss Euler’s method. Given that \(y(a) = b \) and \(y'(a) = f \) then we can find the tangent line to \(y(x) \) and compute the tangent line approximation \(y(a + h) \approx b + h \times f \). In an initial value problem we are given initial values of the form \(y(a) = b \) and we can use the differential equation to compute \(y'(a) \) and then use the tangent line approximation to approximate \(y(a + h) \) where \(h \) is the step size. Then we repeat the tangent line approximation using our approximation for \(y(a + h) \) to approximate \(y(a + 2h) \) and so on. For systems we use the same techniques, we just have to work out tangent line approximations for each function in our system.

EXAMPLE: Approximate the solution of the first order system

\begin{align*}
\frac{dx}{dt} &= 3x + 5y & x(0) &= 1 \\
\frac{dy}{dt} &= 3x + y & y(0) &= 1
\end{align*}
Chapter 2: Linear Constant Coefficient Higher Order Equations

at $t = 0.2$ using Euler’s method with a step size of 0.1.

$$x(.1) \approx x(0) + x'(0) \times 0.1$$
$$= x(0) + (3x(0) + 5y(0)) \times 0.1$$
$$= 1 + 8 \times 0.1 = 1.8$$

$$y(.1) \approx y(0) + y'(0) \times 0.1$$
$$= y(0) + (3x(0) + y(0)) \times 0.1$$
$$= 1 + 4 \times 0.1 = 1.4$$

$$x(.2) \approx x(.1) + x'(.1) \times 0.1$$
$$= x(.1) + (3x(.1) + 5y(.1)) \times 0.1$$
$$\approx 1.8 + 12.4 \times 0.1 = 3.04$$

$$y(.2) \approx y(.1) + y'(.1) \times 0.1$$
$$= y(.1) + (3x(.1) + y(.1)) \times 0.1$$
$$\approx 1.4 + 6.8 \times 0.1 = 2.08$$

Next we discuss the improved Euler’s method. This was previously mentioned in extra credit 2, but don’t panic if you didn’t do extra credit 2. Euler’s method approximates the secant line from $(a, y(a))$ to $(a + h, y(a + h))$ by the tangent line at the left endpoint. This works but is quite inefficient. While the slope of the tangent line at the left endpoint is a reasonable guess for the slope of the secant line, a better estimate for the slope of the secant line is to average the slopes of the tangent lines at both the right and left endpoints. Unfortunately, we don’t know the right endpoint, indeed that is what we are trying to find. But we do have an approximation to the right endpoint, generated by Euler’s method. We can take the slope of the tangent line at this approximate right endpoint, and average it with the slope of the tangent line at the left endpoint to get a new approximation for the slope of the line from $(a, y(a))$ to $(a + h, y(a + h))$. So we first make an estimate for $y(a + h)$, then we improve the estimate. We extend this to systems just as we extended Euler’s method to systems, by approximating all the different functions in our system.

EXAMPLE: Approximate the solution of the first order system

$$\frac{dx}{dt} = 3x + 5y \quad x(0) = 1$$
$$\frac{dy}{dt} = 3x + y \quad y(0) = 1$$
at $t = 0.2$ using the improved Euler’s method with a step size of 0.1.

\[
x(.1) \approx x(0) + x'(0) \times 0.1 \\
= x(0) + (3x(0) + 5y(0)) \times 0.1 \\
= 1 + 8 \times 0.1 = 1.8
\]

\[
y(.1) \approx y(0) + y'(0) \times 0.1 \\
= y(0) + (3x(0) + y(0)) \times 0.1 \\
= 1 + 4 \times 0.1 = 1.4
\]

Now we improve our estimate at $t = 0.1$

\[
x(.1) \approx x(0) + \frac{x'(0) + x'(.1)}{2} \times 0.1 \\
= x(0) + \frac{3x(0) + 5y(0) + 3x(.1) + 5y(.1)}{2} \times 0.1 \\
\approx 1 + \frac{3 + 5 + 5.4 + 7}{2} \times 0.1 = 1.97
\]

\[
y(.1) \approx y(0) + \frac{y'(0) + y'(.1)}{2} \times 0.1 \\
= y(0) + \frac{3x(0) + y(0) + 3x(.1) + y(.1)}{2} \times 0.1 \\
\approx 1 + \frac{3 + 1 + 5.4 + 1.4}{2} \times 0.1 = 1.54
\]

Now we estimate $x(.2)$ and $y(.2)$

\[
x(.2) \approx x(.1) + x'(.1) \times 0.1 \\
= x(.1) + (3x(.1) + 5y(.1)) \times 0.1 \\
\approx 1.97 + 13.61 \times 0.1 = 3.331
\]

\[
y(.2) \approx y(.1) + y'(.1) \times 0.1 \\
= y(.1) + (3x(.1) + y(.1)) \times 0.1 \\
= 1.54 + 7.45 \times 0.1 = 2.285
\]

Now we improve our estimate at $t = 0.2$
Using the improved Euler’s method is more work than using Euler’s method, but the answers we get are much closer to the true values $x(.2) = 3.982566142\ldots$ and $y(.2) = 2.657667704\ldots$. That neither answer is particularly close is because our step size of 0.1 is quite large. We would get more accurate answers with a smaller step size (at least until the step size became so small that roundoff error became a problem).

The true usefulness of these procedures for first order systems is that just as we solved a first order system by converting it to a second order equation in the last section, we can convert a second order equation to a first order system and use these techniques to numerically approximate the solution.

EXAMPLE: Convert the second order equation
\[
\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + x = 0
\]
to a first order system.

Step 1: Introduce a new variable for the first derivative. In this case we let $y(t) = dx/dt$.

Step 2: Rewrite the second derivative of x as the first derivative of the new variable. In this case $d^2x/dt^2 = dy/dt$.

Step 3: Write the original equation and the definition of the new variable as a first order system.
\[
\frac{dx}{dt} = y \\
\frac{dy}{dt} = -x - 4y
\]
Now if you wanted to approximate the solution of the original second order equation numerically you could apply Euler’s method or the improved Euler’s method to the new first order system. This technique will work with equations with variable coefficients and most non-linear equations as well. The general technique for numerically approximating solutions of differential equations is to convert them to first order systems and then use first order techniques (though more often more complicated and accurate techniques like Runge-Kutta methods than Euler’s method or the improved Euler’s method). For example, matlab requires you to rewrite differential equations as a first order system in order to use the built in commands \texttt{ode23} and \texttt{ode45} to numerically approximate the solutions. You may get into matlab and type \texttt{help ode23} for more information about the format required to use the built in methods (which are Runge-Kutta-Fehlberg methods) if you are interested.

\textbf{EXERCISES:}

Approximate $x(.2)$ and $y(.2)$ for the following systems using Euler’s method with a step size of $h = 0.1$. How do the approximate values compare to the true value (which you found in the last section).

\begin{align*}
(1) & \quad \frac{dx}{dt} = 4x + 3y \quad x(0) = 1 \\
& \quad \frac{dy}{dt} = -2x - y \quad y(0) = 1 \\
(2) & \quad \frac{dx}{dt} = 2x + 1y \quad x(0) = 1 \\
& \quad \frac{dy}{dt} = -4x - 3y \quad y(0) = 1 \\
(3) & \quad \frac{dx}{dt} = x \quad x(0) = 1 \\
& \quad \frac{dy}{dt} = 2x \quad y(0) = 2 \\
(4) & \quad \frac{dx}{dt} = -3x + y \quad x(0) = -1 \\
& \quad \frac{dy}{dt} = y \quad y(0) = 2
\end{align*}

Approximate $x(.2)$ and $y(.2)$ for the following systems using the improved Euler’s method with a step size of $h = 0.1$. How do the approximate values compare to the true values.
Chapter 2: Linear Constant Coefficient Higher Order Equations

(which you found in the last section)?

\(\frac{dx}{dt} = 4x + 3y \quad x(0) = 1 \quad \frac{dy}{dt} = -2x - y \quad y(0) = 1 \quad \frac{dx}{dt} = 2x + 1y \quad x(0) = 1 \quad \frac{dy}{dt} = -4x - 3y \quad y(0) = 1 \)

\(\frac{dx}{dt} = x \quad x(0) = 1 \quad \frac{dy}{dt} = 2x \quad y(0) = 2 \quad \frac{dx}{dt} = -3x + y \quad x(0) = -1 \quad \frac{dy}{dt} = y \quad y(0) = 2 \)

Rewrite the following second order equations as first order systems.

\(x'' + 5x' + 7x = 0 \)
\(x'' - 3x' + 2x = e^t \)
\(x'' + 4tx' - x^2 = t + 1 \)
\(x'' + 3x' - x = 0 \)
\(x'' + 5x' + 7x = e^{2x} \)
\(x'' - 3y' - 10y = x + e^x \)
\(x'' + 4y' + 4y = e^{-2x} \)
\(x'' + x' + 5x = 2\cos(t) \)
\(x'' + (x')^2 - tx = 0 \)

§16 Review Problems

Find the general solutions.

\(y'' - y = 0 \quad y'' + 6y' + 9y = 0 \)
\(y'' + 3y' + 4y = 0 \quad y'' + 7y'' + 14y' + 8y = 0 \)
\(y'' + 2y' - 3y = e^{2x} \quad y'' + 2y' - 5y = \cos(5x) \)
\(y'' - 3y' - 10y = x + e^x \quad y'' - 3y' + y = \sin(2x) - \cos(2x) \)
\(y'' + 4y' + 4y = e^{-2x} \quad y'' + y' + 10y = \cos^2(x) \)

Solve the initial value problems.

\(y'' + 4y' + 3y = 0, \quad y(0) = 1, \quad y'(0) = 0 \)
\(y'' + 4y' - 5y = e^{2x}, \quad y(0) = 1, \quad y'(0) = 1 \)
\(y'' - 8y' + 12y = x^2, \quad y(0) = 3, \quad y'(0) = -2 \)
\(y'' + 6y' + 8y = \sin(x), \quad y(0) = -1, \quad y'(0) = 0 \)
\(y'' - 5y' - 14y = e^{7x}, \quad y(0) = -2, \quad y'(0) = -1 \)
\(y'' + 3y' - 4y = e^{2x} \cos(3x), \quad y(0) = 1, \quad y'(0) = 0 \)