and during the examination above instructions for this exam, and I will neither give nor receive any unauthorized aid.

Please:

- If it is determined that you have given or received any unauthorized aid, you will receive no credit for your exam.
- If you wish to speak with a proctor during the exam, then raise your hand and a proctor will come to you.
- If you wish to speak with a proctor during the exam, then raise your hand and a proctor will come to you.
- Write your solutions in an explicit form whenever possible.
- Study the questions carefully. If you encounter any difficulty, please seek assistance from a proctor.
- To receive full credit for a problem, you must show all your work that leads to the answer provided, and a sufficient amount of work that demonstrates your understanding of the problem.
- You may not use any other reference materials except for the course textbook and the provided exam sheet.
- You may not use a calculator during the exam.
- You may only use a calculator during the exam from 9:00am to 9:00pm. If you wish to receive credit for the exam, you must have a calculator.
- The examination period is from 7:00pm to 11:00pm.

Before you begin, make sure that your exam has not expired. If you do not do so, then you will not receive any credit for your exam.

There are 9 pages in this exam with 8 problems. Turn off all communication devices. If you do

Instructions

Exam 1

Kansas State University
Fall 2003

Elementary Differential Equations

Math 240
\[y = c(x + 1)^3 \]

\(y = 0 \) is not a singular solution.

Equation (use c = 0).

\(y = 0 \) is represented in general.

\(y = 0 \) is a solution.

is \(\emptyset \) at \(0 \).

Step 4: In step 3, we obtained by \(y \), which

\[y = c(x + 1)^3 \]

Step 3: \(|y| = |m| \cdot |x + 1| + c \)

\[x \cdot \frac{1 + x}{3} \int \frac{1}{1} y = y \cdot \frac{1}{1} \]

\[\text{Step 1:} \quad -1 < x, \quad \frac{1 + x}{3} = \frac{xp}{\eta p} \]

1. Find all solutions to the following separable equation.
\[\frac{x^2}{1 + x^2} = \gamma \]
\[\frac{x^2}{1 + x^2} = \gamma \]
\[0 = x - x + \sqrt{x - 1}x \]

General Solution \(\gamma = x + \sqrt{x - 1}x \)

Step 6: \(\gamma = (1, \gamma) \)

Step 5: \(\gamma = (x, \gamma) \)

Step 4: \(\gamma = \frac{x \gamma + \sqrt{x - 1}x}{1 + \sqrt{x - 1}x} \)

Step 3: \(\gamma = \frac{x + \sqrt{x - 1}x}{1 + \sqrt{x - 1}x} \)

Step 2: \(\frac{x - 1}{x} = \frac{\gamma}{x} \)

Step 1: \(\frac{x - 1}{x} = \frac{\gamma}{x} \)

\[\{ x, x - 1 \} = \left[x, x - 1 \right] \frac{x}{\gamma} = \frac{x^2}{\gamma} \]

\[\{ 1 + \sqrt{x - 1}x, \gamma \} \frac{x}{\gamma} = \frac{1 + x}{\gamma} \]

Solutions:

2. Test the following equation for exactness and then find all of the
\[
\begin{align*}
\frac{\partial}{\partial y} y &= \frac{\partial}{\partial x} \left(\frac{1}{\sqrt{x}} + 2e^\theta x^2\right) \\
&= 2e^\theta x + 4e^\theta x^3
\end{align*}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \frac{\partial}{\partial y} y \, dy = \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left[\frac{e^\theta x^2}{2} + e^\theta x^4 \right]_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left(\frac{e^\theta x^2}{2} + e^\theta x^4 \right)_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left[\frac{e^\theta x^2}{2} + e^\theta x^4 \right]_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left(\frac{e^\theta x^2}{2} + e^\theta x^4 \right)_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left(\frac{e^\theta x^2}{2} + e^\theta x^4 \right)_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left(\frac{e^\theta x^2}{2} + e^\theta x^4 \right)_{x_1}^{x_2}
\]

\[
\Rightarrow \quad \int_{x_1}^{x_2} \left(2e^\theta x + 4e^\theta x^3\right) \, dx = \left(\frac{e^\theta x^2}{2} + e^\theta x^4 \right)_{x_1}^{x_2}
\]

3. Solve the following initial value problem:
4. Solve the following initial value problem:

\[y(2) = -1, \quad \frac{dy}{dx} = \frac{y}{x}, \quad x \neq 0 \]

General Solution:

\[y = \frac{C}{x} \]

Particular Solution:

\[y = \frac{C}{x} \]

\[y(2) = -1 \]

\[\frac{C}{2} = -1 \]

\[C = -2 \]

\[y = \frac{-2}{x} \]
No, it is not a streamline solution (a good choice).

\[\left\{ \begin{array}{c}
 x = \frac{15}{e} - 3x \\
 y = \frac{15}{e} + (\frac{e}{2}x)^{2}
\end{array} \right. \text{ and } y = 0 \]

\[y = \int \left[\frac{15}{e} - \frac{1}{x} \right] dx + \left(\frac{e}{2}x \right)^2 = 0 \Rightarrow \left(\frac{e}{2}x \right)^2 + \frac{15}{e} x = \frac{15}{e} - \frac{1}{x} \]

Is it represented in the general solution?

Step 1: \(y = 0 \) is a solution. To find the general solution:

\[\int \frac{dx}{x} = \int \left(\frac{15}{e} - \frac{1}{x} \right) dx + \left(\frac{e}{2}x \right)^2 \]

Step 2: Solve for \(\int \frac{dx}{x} \):

\[\int \frac{dx}{x} = \frac{15}{e} x - \ln|x| + C \]

Step 3: \(C \) is a constant (arbitrary).

\[\int \frac{dx}{x} = \frac{15}{e} x - \ln|x| + C \]

\[5x - 10y = 0 \Rightarrow \frac{xy}{yp} \]

5. Find all solutions to the following equation.
6. Suppose that \(p \) is the solution to the following initial value problem:

\[
\begin{align*}
\frac{dp}{dt} &= f(t, p) = 5, \\
p(t) &= g(t) = 0, \\
p(r) &= p = 3 \\
p(t) &= 3. \\
0 < p < 3, & \text{ if } 0 < p < 3, \\
1 < p < 3, & \text{ if } 1 < p < 3, \\
0 < p < 2, & \text{ if } 0 < p < 2.
\end{align*}
\]

(c) What value does \(p(t) \) approach as \(t \) decreases from 0? If \(p(0) \) decreases to \(-\infty\) or decreases to \(+\infty\), indicate so.

(d) What value does \(p(t) \) approach as \(t \) decreases from 0? If \(p(0) \) increases to \(+\infty\) or decreases to \(-\infty\), indicate so.

8. Based on the work in part a,

To \(+\infty\) it finite time \(t \),

and the solution increases.

So \(p(t) < 3 \).

\[p(0) = 5 < 3 \]

\[0 < (p+2)(p+3) \]

If \(0 < p < 3 \), then \((p+2)(p+3) > 0 \).

If \(1 < p < 3 \), then \((p+2)(p+3) > 0 \).

If \(0 < p < 2 \), then \((p+2)(p+3) < 0 \).

Step 1: Check points \(p = 3 \) and \(p = -2 \).

\[\frac{dp}{dt} = \frac{5p}{p^2} \]

The solution decreases to \(-\infty\) or decreases to \(+\infty\) for a finite \(t \), indicate so.

\((t) \)
(a) Write an autonomous differential equation for this model: assume that the constant of proportionality is positive.

$$\frac{dP}{dt} = kP(N-P)$$

(b) Find the equilibrium points for your differential equation and determine their stability.

1. $P = 0$, since $kP(0-P) = 0$.
2. $P = N$, since $kP(N-P) = 0$.
3. $\frac{dP}{dt} < 0$ for $0 < P < N$.
4. $\frac{dP}{dt} > 0$ for $P > N$.

(c) According to this model, if at some time there is at least one person in the population that receives a piece of information, then how many people will eventually receive this information?

The solution to the population size N, the population size P, and the rate of change of the population size $\frac{dP}{dt}$.

According to the model, if at some time there is at least one person in the population that receives a piece of information, then how many people will eventually receive this information?
The model above, based on the model above, how many fish are harvested in a one-year period? Extra Credit (2 points): How many fish are harvested in a one-year period?

\[
\frac{1}{100} = \left(1 - \frac{0.05 \cos(2\pi t)}{2.25} \right) = \frac{1}{100} \int_{0}^{0.5} \sin(\pi t) (2.25 + 0.05) dt
\]

These are about 2,232 fish which is

\[
P(1) \approx 2232.
\]

So, 2232 fish are harvested.

\[
\left[\frac{2}{(0.05)^2 + (0.8)^2} \right] 80 = \int_{0}^{\infty} e^{-0.05t} dt
\]

\[
0.136 = \int_{0}^{\infty} e^{-0.05t} dt
\]

Now many fish are in the pond when \(t = 1 \)? Approximately the value of \(P(1) \). Approximately the size of \(y = 2.25 \) to approximate the value of \(y = 2.25 \).

Assume that \(P(0) = 80 \). Use the improved Euler's method with \(h = 0.5 \), \(\tau = 1 \), \(p = 1 \), \(\omega = 0.5 \).

\[
\tau = 0.5, \quad p = 0.5, \quad \omega = 0.5
\]

\[
P(t) \approx \left(1 - \frac{0.05 \cos(2\pi t)}{2.5} \right) dt = \left(1 - \frac{0.05 \cos(2\pi t)}{2.5} \right) dt
\]

\[
10000 \cdot 100 \sin(2\pi t) \left(1 - \frac{0.05 \cos(2\pi t)}{2.5} \right) dt = \frac{1000}{d} dp
\]

The following differential equation models a pond's population of fish that grows logistically and is harvested periodically.

\[
\frac{dy}{dt} = \frac{10000}{d} \sin(2\pi t) \left(1 - \frac{0.05 \cos(2\pi t)}{2.5} \right)
\]

where \(d \) is the size of the population in 100s of fish and \(t \) is in years.