Analytic Geometry and Calculus I – Exam 1
Summer 2006

Show all work for full credit. You may use a basic function calculator, but not a graphing or scientific calculator. No notes or books are allowed.

<table>
<thead>
<tr>
<th>page</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(10 pts) 1. Sketch the graph of the following function and use it to determine the values of a for which $\lim_{x \to a} f(x)$ exists.

$$f(x) = \begin{cases}
 x^2 + 1, & \text{if } x < -1 \\
 2x, & \text{if } -1 \leq x < 2 \\
 -x + 4, & \text{if } x \geq 2
\end{cases}$$
2. Evaluate the following limits (if the limit does not exist, explain why).

(a) \(\lim_{x \to 1} \left(x^2 + \frac{3}{x + 2} \right) \)

(b) \(\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x - 3} \)

(c) \(\lim_{h \to 0} \frac{(3 + h)^2 - 9}{h} \)

(d) \(\lim_{x \to 6} \frac{x^2 - 36}{\sqrt{x} - \sqrt{6}} \)

(e) \(\lim_{x \to 3} \frac{|x - 3|}{x - 3} \)

(f) \(\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y} \)
(10 pts) 3. By calculating an appropriate limit, find the slope of the tangent line to the graph of the function \(f(x) = x^2 \) at (3,9).

(10 pts) 4. Explain why the function is discontinuous at 1 and sketch the graph.

\[
f(x) = \begin{cases}
x^2, & \text{if } x \leq 1 \\
2x, & \text{if } x > 1
\end{cases}
\]
(10 pts) 5.

(a) From the graph of f, state the numbers at which f is discontinuous and explain why.

(b) From the graph of f, state the open intervals on which f is continuous.
(10 pts) 6. The graph shows the position function of a car. Use the shape of the graph to explain your answers to the following questions.

(a) Was the car going faster at A or B?

(b) At which point(s) was the car slowing down?

(c) At which point(s) was the car speeding up?

(d) What happened around point C?
(10 pts) 7. Find the constant \(c \) that makes \(g \) continuous on \((-\infty, \infty)\).

\[
g(x) = \begin{cases}
 cx + 3c, & \text{if } x < 2 \\
 5x, & \text{if } x \geq 2
\end{cases}
\]

(10 pts) 8. Let \(f(x) = x^2 + 5 \). Explain why there is a number \(c \) such that \(f(c) = 12 \).